Role of Human Perception in Cluster-based Visual Analysis of Multidimensional Data Projections

Ronak Etemadpour, Robson Carlos da Motta, Jose Gustavo de Souza Paiva, Rosane Minghim, Maria Cristina Ferreira de Oliveira, Lars Linsen

2014

Abstract

Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations, multidimensional projections or other dimension reduction techniques are commonly used to project high-dimensional data point to a 2D point using a certain strategy for the 2D layout.Typical analysis tasks for projected multidimensional data do not necessarily match the expectations of human perception. Learning more about the effectiveness of projection layouts from a users perspective is an important step towards consolidating their role in supporting visual analytics tasks. Those tasks often involve detecting and correlating clusters. To understand the role of orientation and cluster properties of size, shape and density, we first conducted a study with synthetic 2D scatter plots, where we can set the respective properties manually. Then we picked five projection methods representative of different approaches to generate layouts of high dimensional data for two domains, image and document data. The users were asked to identify the clusters on real-world data and answers to questions were compared for correctness against ground truth computed directly from the data. Our results offer interesting insight on the use of projection layouts in data visualization tasks.

References

  1. Ahuja, N. and Tuceryan, M. (1998). Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt. Computer Vision, Graphics, and Image Processing archive, 48 Issue:3:304-356.
  2. Albuquerque, G., Eisemann, M., and Magnor, M. (2011). Perception-based visual quality measures. In Proc. IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 13-20.
  3. Bertini, E., Tatu, A., and Keim, D. (2011). Quality metrics in high-dimensional data visualization: An overview and systematization. IEEE Transactions on Visualization and Computer Graphics, 17(12):2203 -2212.
  4. Borg, I. and Groenen, P. J. F. (2010). Modern Multidimensional Scaling Theory and Applications. Springer Series in Statistics. Springer, 2nd. edition edition.
  5. Cuadros, A. M., Paulovich, F. V., Minghim, R., and Telles, G. P. (2007). Point placement by phylogenetic trees and its application to visual analysis of document collections. In Proceedings of the 2007 IEEE Symposium on Visual Analytics Science and Technology, pages 99-106. IEEE Computer Society.
  6. Geng, X., Zhan, D. C., and Zhou, Z. H. (2005). Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35 Issue:6:1098 - 1107.
  7. Healey, B. G., Booth, K. S., and Enns, J. T. (1996). Highspeed visual estimation using preattentive processing. ACM Transactions on Computer-Human Interaction, 3(2):107-135.
  8. Ingram, S., Munzner, T., and Olano, M. (2009). Glimmer: Multilevel mds on the gpu. IEEE Transactions on Visualization and Computer Graphics, 15(2):249-261. Pincipal Component Analysis.
  9. Jolliffe, I. T. (1986). Springer-Verlag.
  10. Li, J. and Wang, J. Z. (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9):1075-1088.
  11. Mayorga, A. and Gleicher, M. (2013). Splatterplots: Overcoming overdraw in scatter plots. IEEE Transactions on Visualization and Computer Graphics, TBD(TBD):TBD. Accepted, To Appear.
  12. Paiva, J., Florian, L., Pedrini, H., Telles, G., and Minghim, R. (2011). Improved similarity trees and their application to visual data classification. IEEE Transactions on Visualization and Computer Graphics, 17(12):2459-2468.
  13. Paulovich, F. V., Nonato, L. G., Minghim, R., and Levkowitz, H. (2008). Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping. IEEE Transactions on Visualization and Computer Graphics, 14(3):564-575.
  14. Rensink, R. and Baldridge, G. (2010a). The perception of correlation in scatterplots. Computer Graphics Forum (Proceedings of EuroVis 2010), 29:1203-1210.
  15. Rensink, R. and Baldridge, G. (2010b). The visual perception of correlation in scatterplots. Journal of Vision, 10(7):975.
  16. Sedlmair, M., Tatu, A., Munzner, T., and Tory, M. (2012). A taxonomy of visual cluster separation factors. Computer Graphics Forum (Proc. EuroVis), 31(3):1335- 1344.
  17. Tan, P. N., Steinbach, M., and Kumar, V. (2005). Introduction to data mining. Addison-Wesley Longman, Boston, MA, USA.
  18. Tatu, A., Bak, P., Bertini, E., Keim, D. A., and Schneidewind, J. (2010). Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI 7810), pages 49-56.
  19. Tenembaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric faramework for nonlinear dimensionality reduction. Science, 290:2319-2323.
  20. Ware, C. (2000). Information visualization: perception for design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  21. Wertheimer, M. (2005). Untersuchungen zur lehre von der gestalt. Psychological Research, 4:301-350.
Download


Paper Citation


in Harvard Style

Etemadpour R., Carlos da Motta R., de Souza Paiva J., Minghim R., Ferreira de Oliveira M. and Linsen L. (2014). Role of Human Perception in Cluster-based Visual Analysis of Multidimensional Data Projections . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 276-283. DOI: 10.5220/0004682102760283


in Bibtex Style

@conference{ivapp14,
author={Ronak Etemadpour and Robson Carlos da Motta and Jose Gustavo de Souza Paiva and Rosane Minghim and Maria Cristina Ferreira de Oliveira and Lars Linsen},
title={Role of Human Perception in Cluster-based Visual Analysis of Multidimensional Data Projections},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},
year={2014},
pages={276-283},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004682102760283},
isbn={978-989-758-005-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - Role of Human Perception in Cluster-based Visual Analysis of Multidimensional Data Projections
SN - 978-989-758-005-5
AU - Etemadpour R.
AU - Carlos da Motta R.
AU - de Souza Paiva J.
AU - Minghim R.
AU - Ferreira de Oliveira M.
AU - Linsen L.
PY - 2014
SP - 276
EP - 283
DO - 10.5220/0004682102760283