Dense Long-term Motion Estimation via Statistical Multi-step Flow

Pierre-Henri Conze, Philippe Robert, Tomás Crivelli, Luce Morin

2014

Abstract

We present statistical multi-step flow, a new approach for dense motion estimation in long video sequences. Towards this goal, we propose a two-step framework including an initial dense motion candidates generation and a new iterative motion refinement stage. The first step performs a combinatorial integration of elementary optical flows combined with a statistical candidate displacement fields selection and focuses especially on reducing motion inconsistency. In the second step, the initial estimates are iteratively refined considering several motion candidates including candidates obtained from neighboring frames. For this refinement task, we introduce a new energy formulation which relies on strong temporal smoothness constraints. Experiments compare the proposed statistical multi-step flow approach to state-of-the-art methods through both quantitative assessment using the Flag benchmark dataset and qualitative assessment in the context of video editing.

References

  1. Brox, T. and Malik, J. (2010). Object segmentation by long term analysis of point trajectories. European Conference on Computer Vision, pages 282-295.
  2. Brox, T. and Malik, J. (2011). Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3):500-513.
  3. Conze, P.-H., Crivelli, T., Robert, P., and Morin, L. (2013). Dense motion estimation between distant frames: combinatorial multi-step integration and statistical selection. In IEEE International Conference on Image Processing.
  4. Crivelli, T., Conze, P.-H., Robert, P., Fradet, M., and Pérez, P. (2012a). Multi-Step Flow Fusion: Towards accurate and dense correspondences in long video shots. British Machine Vision Conference.
  5. Crivelli, T., Conze, P.-H., Robert, P., and Pérez, P. (2012b). From optical flow to dense long term correspondences. In IEEE International Conference on Image Processing.
  6. Garg, R., Roussos, A., and Agapito, L. (2013). A variational approach to video registration with subspace constraints. International Journal of Computer Vision.
  7. Granados, M., Kim, K. I., Tompkin, J., Kautz, J., and Theobalt, C. (2012). MPI-S1. http://www.mpiinf.mpg.de/ granados/projects/vidbginp/index.html.
  8. Lempitsky, V., Rother, C., Roth, S., and Blake, A. (2010). Fusion moves for Markov random field optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1392-1405.
  9. Papadakis, N., Corpetti, T., and Mémin, E. (2007). Dynamically consistent optical flow estimation. In IEEE International Conference on Computer Vision.
  10. Pizarro, D. and Bartoli, A. (2012). Feature-based deformable surface detection with self-occlusion reasoning. International Journal of Computer Vision.
  11. Robert, P., Thébault, C., Drazic, V., and Conze, P.-H. (2012). Disparity-compensated view synthesis for s3D content correction. In SPIE IS&T Electronic Imaging Stereoscopic Displays and Applications.
  12. Salgado, A. and Sánchez, J. (2007). Temporal constraints in large optical flow estimation. In Computer Aided Systems Theory Eurocast, pages 709-716.
  13. Sand, P. and Teller, S. J. (2008). Particle video: Long-range motion estimation using point trajectories. International Journal of Computer Vision, 80(1):72-91.
  14. Sundaram, N., Brox, T., and Keutzer, K. (2010). Dense point trajectories by GPU-accelerated large displacement optical flow. European Conference on Computer Vision, pages 438-451.
  15. Volz, S., Bruhn, A., Valgaerts, L., and Zimmer, H. (2011). Modeling temporal coherence for optical flow. In IEEE International Conference on Computer Vision.
  16. Wedel, A., Pock, T., Zach, C., Bischof, H., and Cremers, D. (2009). An improved algorithm for TV-L1 optical flow. In Statistical and Geometrical Approaches to Visual Motion Analysis, pages 23-45. Springer.
  17. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., and Bischof, H. (2009). Anisotropic Huber-L1 optical flow. British Machine Vision Conference.
Download


Paper Citation


in Harvard Style

Conze P., Robert P., Crivelli T. and Morin L. (2014). Dense Long-term Motion Estimation via Statistical Multi-step Flow . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 545-554. DOI: 10.5220/0004683005450554


in Bibtex Style

@conference{visapp14,
author={Pierre-Henri Conze and Philippe Robert and Tomás Crivelli and Luce Morin},
title={Dense Long-term Motion Estimation via Statistical Multi-step Flow},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={545-554},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004683005450554},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Dense Long-term Motion Estimation via Statistical Multi-step Flow
SN - 978-989-758-009-3
AU - Conze P.
AU - Robert P.
AU - Crivelli T.
AU - Morin L.
PY - 2014
SP - 545
EP - 554
DO - 10.5220/0004683005450554