comparison on two motion tracking methods. Pattern
Recognition Letters, 27(12):1342–1352.
Drews, F. A., Pasupathi, M., and Strayer, D. L. (2008). Pas-
senger and cell phone conversations in simulated driv-
ing. Journal of Experimental Psychology: Applied,
14(4):392.
Enriquez, I. J. G., Bonilla, M. N. I., and Cortes, J. M. R.
(2009). Segmentacion de rostro por color de la piel
aplicado a deteccion de somnolencia en el conduc-
tor. Congreso Nacional de Ingenieria Electronica del
Golfo CONAGOLFO, pages 67–72.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley
Professional, 1 edition.
Goodman, M., Benel, D., Lerner, N., Wierwille, W., Tije-
rina, L., and Bents, F. (1997). An investigation of the
safety implications of wireless communications in ve-
hicles. US Dept. of Transportation, National Highway
Transportation Safety Administration.
Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., and
Sch
¨
olkopf, B. (1998). Support vector machines.
Intelligent Systems and their Applications, IEEE,
13(4):18–28.
Hu, M. K. (1962). Visual pattern recognition by moment
invariants. Information Theory, IRE Transactions on,
8(2):179–187.
Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection.
In International joint Conference on artificial intelli-
gence, volume 14, pages 1137–1145. Lawrence Erl-
baum Associates Ltd.
NHTSA (2011). Driver electronic device use in 2010. Traf-
fic Safety Facts - December 2011, pages 1–8.
Peissner, M., Doebler, V., and Metze, F. (2011). Can voice
interaction help reducing the level of distraction and
prevent accidents?
Regan, M. A., Lee, J. D., and Young, K. L. (2008). Driver
distraction: Theory, effects, and mitigation. CRC.
Smith, J. R. and Chang, S. F. (1996). Tools and techniques
for color image retrieval. In SPIE proceedings, vol-
ume 2670, pages 1630–1639.
Stanimirova, I.,
¨
Ust
¨
un, B., Cajka, T., Riddelova, K., Ha-
jslova, J., Buydens, L., and Walczak, B. (2010). Trac-
ing the geographical origin of honeys based on volatile
compounds profiles assessment using pattern recogni-
tion techniques. Food Chemistry, 118(1):171–176.
Strayer, D. L., Cooper, J. M., Turrill, J., Coleman, J.,
Medeiros-Ward, N., and Biondi, F. (2013). Measuring
cognitive distraction in the automobile. AAA Founda-
tion for Traffic Safety - June 2013, pages 1–34.
Strayer, D. L., Watson, J. M., and Drews, F. A. (2011).
2 cognitive distraction while multitasking in the au-
tomobile. Psychology of Learning and Motivation-
Advances in Research and Theory, 54:29.
Vapnik, V. (1995). The nature of statistical learning theory.
Springer-Verlag, New York.
Veeraraghavan, H., Bird, N., Atev, S., and Papanikolopou-
los, N. (2007). Classifiers for driver activity monito-
ring. Transportation Research Part C: Emerging Tech-
nologies, 15(1):51–67.
Viola, P. and Jones, M. (2001). Robust real-time object
detection. International Journal of Computer Vision,
57(2):137–154.
Wang, L. (2005). Support Vector Machines: theory and
applications, volume 177. Springer, Berlin, Germany.
Watkins, M. L., Amaya, I. A., Keller, P. E., Hughes, M. A.,
and Beck, E. D. (2011). Autonomous detection of dis-
tracted driving by cell phone. In Intelligent Trans-
portation Systems (ITSC), 2011 14th International
IEEE Conference on, pages 1960–1965. IEEE.
Yang, J., Sidhom, S., Chandrasekaran, G., Vu, T., Liu, H.,
Cecan, N., Chen, Y., Gruteser, M., and Martin, R. P.
(2011). Detecting driver phone use leveraging car
speakers. In Proceedings of the 17th annual interna-
tional conference on Mobile computing and network-
ing, pages 97–108. ACM.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
418