mized with respect to user expectations. Since com-
puting layouts for large graphs is still too slow for
interactive use, it would likely benefit by porting the
layout algorithm to GPUs. Moreover, we want to add
support for move and rename as possible change oper-
ations.
ACKNOWLEDGEMENTS
The authors would like to thank the anonymous re-
viewers for their valuable comments. This work was
funded by the Research School on ”Service-Oriented
Systems Engineering” of the Hasso-Plattner-Institute
and the Federal Ministry of Education and Research
(BMBF), Germany, within the InnoProfile Transfer re-
search group ”4DnD-Vis” (www.4dndvis.de).
REFERENCES
Andrews, K., Kienreich, W., Sabol, V., Becker, J., Droschl,
G., Kappe, F., Granitzer, M., Auer, P., and Tochtermann,
K. (2002). The infosky visual explorer: exploiting hi-
erarchical structure and document similarities. Infor-
mation Visualization, 1(3-4):166–181.
Balzer, M., Deussen, O., and Lewerentz, C. (2005). Voronoi
treemaps for the visualization of software metrics. In
Proceedings of the 2005 ACM symposium on Software
visualization, pages 165–172. ACM.
Bruls, M., Huizing, K., and Van Wijk, J. J. (2000). Squarified
treemaps. In Data Visualization 2000, pages 33–42.
Springer.
Card, S. K., Sun, B., Pendleton, B. A., Heer, J., and Bodnar,
J. W. (2006). Time tree: Exploring time changing hi-
erarchies. In Visual Analytics Science And Technology,
2006 IEEE Symposium On, pages 3–10. IEEE.
Du, Q., Faber, V., and Gunzburger, M. (1999). Centroidal
voronoi tessellations: Applications and algorithms.
SIAM review, 41(4):637–676.
Floater, M. S., Hormann, K., and K
´
os, G. (2006). A general
construction of barycentric coordinates over convex
polygons. advances in computational mathematics,
24(1-4):311–331.
Guerra-G
´
omez, J. A., Pack, M. L., Plaisant, C., and Shneider-
man, B. (2013). Visualizing Change Over Time Using
Dynamic Hierarchies: TreeVersity2 and the StemView.
IEEE Transactions on Visualization and Computer
Graphics, 19(12):2566–2575.
Hadlak, S., Tominski, C., Schulz, H.-J., and Schumann, H.
(2010). Visualization of attributed hierarchical struc-
tures in a spatiotemporal context. International Jour-
nal of Geographical Information Science, 24(10):1497–
1513.
Johnson, B. and Shneiderman, B. (1991). Tree-maps: A
space-filling approach to the visualization of hierar-
chical information structures. In Visualization, 1991.
Visualization’91, Proceedings., IEEE Conference on,
pages 284–291. IEEE.
Kitchin, R. M. (1994). Cognitive maps: What are they and
why study them? Journal of Environmental Psychol-
ogy, 14(1):1 – 19.
Kuhn, A., Loretan, P., and Nierstrasz, O. (2008). Consistent
layout for thematic software maps. In Reverse Engi-
neering, 2008. WCRE’08. 15th Working Conference
on, pages 209–218. IEEE.
Nocaj, A. and Brandes, U. (2012a). Computing voronoi
treemaps: Faster, simpler, and resolution-independent.
In Computer Graphics Forum, volume 31, pages 855–
864. Wiley Online Library.
Nocaj, A. and Brandes, U. (2012b). Organizing search re-
sults with a reference map. Visualization and Com-
puter Graphics, IEEE Transactions on, 18(12):2546–
2555.
Shneiderman, B. (1992). Tree visualization with tree-maps:
2-d space-filling approach. ACM Transactions on
graphics (TOG), 11(1):92–99.
Shneiderman, B. and Wattenberg, M. (2001). Ordered
treemap layouts. In Proceedings of the IEEE Sym-
posium on Information Visualization 2001, volume
73078.
Sud, A., Fisher, D., and Lee, H.-P. (2010). Fast dynamic
voronoi treemaps. In Voronoi Diagrams in Science and
Engineering (ISVD), 2010 International Symposium
on, pages 85–94. IEEE.
Tak, S. and Cockburn, A. (2013). Enhanced spatial stability
with hilbert and moore treemaps. IEEE Transactions
on Visualization and Computer Graphics, 19(1):141–
148.
Wachspress, E. (1975). A Rational Finite Element Basis.
Academic Press rapid manuscript reproductions. Aca-
demic Press.
IVAPP2014-InternationalConferenceonInformationVisualizationTheoryandApplications
58