is the second existing technique able to use surface
skeletons to segment 3D surfaces. In contrast to the
first published technique in this area (Reniers and
Telea, 2008b), we can directly handle meshed mod-
els without a costly voxelization step; we do not re-
quire the complex and sensitive detection of skeletal
boundaries; and we can treat significantly more com-
plex shapes than the earlier cited method in this class.
Our research is motivated by the need to create
robust and fast segmentations of dental cast models,
driven by a concrete industrial application at Philips
Research, Eindhoven, the Netherlands. We foresee
several possible extensions of our method towards
a more general-purpose surface segmentation tech-
nique. Examples are the incorporation of surface dif-
ferential properties, captured by the feature transform,
in the analysis and segmentation of the surface skele-
ton, and application-adaptive skeleton simplification
metrics that preserve or eliminate specific surface de-
tails for the purpose of more versatile segmentation.
REFERENCES
Amenta, N., Choi, S., and Kolluri, R. (2001). The power
crust. In Proc. SMA, pages 65–73. ACM.
Atron, Inc. (2013). 3D intraoral scanner. www.a-
tron3d.com/en/products/id-3d-intraoral-scanner.html.
Blum, H. (1967). A Transformation for Extracting New
Descriptors of Shape. In Wathen-Dunn, W., editor,
Models for the Perception of Speech and Visual Form,
pages 362–380. MIT Press, Cambridge.
Borgefors, G., di Baja, G., and Svensson, S. (2009). De-
composing digital 3D shapes using a multiresolution
structure. In Proc. DGCI, pages 19–28. Springer.
Bouix, S., Siddiqi, K., and Tannenbaum, A. (2005). Flux
driven automatic centerline extraction. Medical Image
Analysis, 9(3):209–221.
Bouix, S., Siddiqi, K., Tannenbaum, A., and Zucker, S.
(2006). Medial axis computation and evolution. In
Statistics and analysis of shape, chapter 1, pages 1–
28. Springer LNCS.
Clarenz, U., Griebel, M., Schewitzer, M., and Telea, A.
(2004). Feature sensitive multiscale editing on sur-
faces. Visual Computer, 20(5):329–343.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE TPAMI,
24(5):603–619.
Cornea, N., Silver, D., and Min, P. (2007). Curve-skeleton
properties, applications, and algorithms. IEEE TVCG,
13(3):87–95.
Frey, P. (2001). YAMS: a fully automatic adaptive isotropic
surface remeshing procedure. tech. rep. 0252, INRIA.
http://www.ann.jussieu.fr/ frey.
Garland, M., Willmott, A., and Heckbert, P. (2001). Hierar-
chical face clustering on polygonal surfaces. In Proc.
ACM Symp. I3D, pages 49–58.
Hirogaki, Y., Sohmura, T., Satoh, H., Takahashi, J., and
Takada, K. (2001). Complete 3-d reconstruction of
dental cast shape using perceptual grouping. Medical
Imaging, IEEE Transactions on, 20(10):1093–1101.
Jalba, A., Kustra, J., and Telea, A. (2013). Surface and
curve skeletonization of large 3D models on the GPU.
IEEE TPAMI, 35(6):1495–1508.
Kondo, T., Ong, S., and Foong, K. W. C. (2004). Tooth seg-
mentation of dental study models using range images.
IEEE Trans Med Imag, 23(3):350–362.
Kronfeld, T., Brunner, D., and Brunnett, G. (2010). Snake-
based segmentation of teeth from virtual dental casts.
CAGD, 7(2):221–233.
Ma, J., Bae, S., and Choi, S. (2012). 3D medial axis point
approximation using nearest neighbors and the normal
field. Vis. Comput., 28(1):7–19.
Mangan, A. and Whitaker, R. (1999). Partitioning 3D sur-
face meshes using watershed segmentation. IEEE
TVCG, 5(4):308–321.
Mount, D. and Arya, S. (2011). Approximate nearest neigh-
bor search software. www.cs.umd.edu/ mount/ANN.
Palagyi, K. and Kuba, A. (1999). Directional 3D thinning
using 8 subiterations. In Proc. DGCI, volume 1568,
pages 325–336. Springer LNCS.
Pizer, S., Siddiqi, K., Szekely, G., Damon, J., and Zucker,
S. (2003). Multiscale medial loci and their properties.
IJCV, 55(2-3):155–179.
Provot, L. and Debled-Rennesson, I. (2008). Segmentation
of noisy discrete surfaces. In Proc. IWCIA, volume
4958, pages 160–171. Springer LNCS.
Pudney, C. (1998). Distance-ordered homotopic thinning:
A skeletonization algorithm for 3D digital images.
CVIU, 72(3):404–413.
Reniers, D., Jalba, A., and Telea, A. (2008a). Robust classi-
fication and analysis of anatomical surfaces using 3D
skeletons. In Proc. VCBM, pages 61–68. EG Press.
Reniers, D. and Telea, A. (2007). Tolerance-based fea-
ture transforms. In Advances in Comp. Graphics and
Comp. Vision, pages 187–200. Springer.
Reniers, D. and Telea, A. (2008a). Part-type segmentation
of articulated voxel-shapes using the junction rule.
CGF, 27(7):1837–1844.
Reniers, D. and Telea, A. (2008b). Patch-type segmenta-
tion of voxel shapes using simplified surface skele-
tons. CGF, 27(7):1954–1962.
Reniers, D., van Wijk, J. J., and Telea, A. (2008b). Com-
puting multiscale skeletons of genus 0 objects using a
global importance measure. IEEE TVCG, 14(2):355–
368.
Shamir, A. (2004). A formulation of boundary mesh seg-
mentation. In Proc.3DPVT, pages 378–386.
Siddiqi, K., Bouix, S., Tannenbaum, A., and Zucker, S.
(2002). Hamilton-Jacobi skeletons. IJCV, 48(3):215–
231.
Siddiqi, K. and Pizer, S. (2009). Medial Representations:
Mathematics, Algorithms and Applications. Springer.
Stolpner, S., Whitesides, S., and Siddiqi, K. (2009). Sam-
pled medial loci and boundary differential geometry.
In Proc. IEEE 3DIM, pages 87–95.
ShapeSegmentationusingMedialPointCloudswithApplicationstoDentalCastAnalysis
169