more suitable to the new imaging scenarios. Another
aspect to invest is the segmentation step which prefer-
ably should be automatic, however, the iris segmenta-
tion problem constitutes by itself a whole new set of
challenges.
We participated in an iris liveness competition, the
“LivDet Competition 2013” (Clarkson University and
of Technology, 2013a), held as part of the IEEE BTAS
2013
1
. We applied this methodology combined with
an automatic segmentation method (Monteiro et al.,
2013; Monteiro et al., 2014) and achieved the first
place
2
.
ACKNOWLEDGEMENTS
The first author would like to thank the Fundac¸
˜
ao
para a Ci
ˆ
encia e Tecnologia (FCT) - Portugal for the
financial support for the PhD grant with reference
SFRH/BD/74263/2010. The second author would
like to thank the National Council for Scientific and
Technological Development (CNPq) - Brazil.
REFERENCES
Abhyankar, A. and Schuckers, S. (2009). Iris quality assess-
ment and bi-orthogonal wavelet based encoding for
recognition. Pattern Recognition, 42(9):1878 – 1894.
Blind Ref, B. R. (2013). Reference removed for blind re-
view.
Clarkson University, N. D. U. and of Technol-
ogy, W. U. (2013a). Liveness Detection-
iris competition 2013. IEEE BTAS 2013.
http://people.clarkson.edu/projects/biosal/iris/.
Clarkson University, N. D. U. and of Technol-
ogy, W. U. (2013b). Liveness Detection-
iris competition 2013. IEEE BTAS 2013.
http://people.clarkson.edu/projects/biosal/iris/results.php.
Daugman, J. (1998). Recognizing people by their iris
patterns. Information Security Technical Report,
3(1):33–39.
Daugman, J. (2002). How iris recognition works. In Inter-
national Conference on Image Processing, volume 1,
pages I–33 – I–36.
Daugman, J. (2004). Iris recognition and anti-spoofing
countermeasures. In 7-th International Biometrics
conference.
Fierrez, J., Ortega-Garcia, J., Torre Toledano, D., and
Gonzalez-Rodriguez, J. (2007). Biosec baseline cor-
pus: A multimodal biometric database. Pattern
Recognition, 40(4):1389–1392.
1
http://www.btas2013.org/
2
http://people.clarkson.edu/projects/biosal/iris/results.php
Galbally, J., Alonso-Fernandez, F., Fierrez, J., and Ortega-
Garcia, J. (2012a). A high performance finger-
print liveness detection method based on quality re-
lated features. Future Generation Computer Systems,
28(1):311–321.
Galbally, J., Fierrez, J., and Ortega-Garcia, J. (2007). Vul-
nerabilities in biometric systems: attacks and recent
advances in liveness detection. DATABASE, 1(3):4.
Galbally, J., Ortiz-Lopez, J., Fierrez, J., and Ortega-Garcia,
J. (2012b). Iris liveness detection based on quality
related features. In 5th IAPR International Conference
on Biometrics (ICB), pages 271–276. IEEE.
GIMP, G. (2008). Image manipulation program. User Man-
ual, Edge-Detect Filters, Sobel, The GIMP Documen-
tation Team.
Haralick, R. M., Shanmugam, K., and Dinstein, I. H.
(1973). Textural features for image classification.
Systems, Man and Cybernetics, IEEE Transactions,
(6):610–621.
He, X., An, S., and Shi, P. (2007). Statistical texture
analysis-based approach for fake iris detection using
support vector machines. In Advances in Biometrics,
pages 540–546. Springer.
He, X., Lu, Y., and Shi, P. (2009). A new fake iris detec-
tion method. In Advances in Biometrics, pages 1132–
1139. Springer.
Jain, A. and Zongker, D. (1997). Feature selection: Evalua-
tion, application, and small sample performance. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions, 19(2):153–158.
Kanematsu, M., Takano, H., and Nakamura, K. (2007).
Highly reliable liveness detection method for iris
recognition. In SICE, 2007 Annual Conference, pages
361–364. IEEE.
Lee, E., Park, K., and Kim, J. (2005). Fake iris detection
by using purkinje image. In Advances in Biometrics,
volume 3832 of Lecture Notes in Computer Science,
pages 397–403. Springer Berlin / Heidelberg.
Li, J., Wang, Y., Tan, T., and Jain, A. K. (2004). Live face
detection based on the analysis of fourier spectra. In
Defense and Security, pages 296–303. International
Society for Optics and Photonics.
Ma, L., Tan, T., Wang, Y., and Zhang, D. (2003). Per-
sonal identification based on iris texture analysis. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions, 25(12):1519–1533.
Monteiro, J. C., Oliveira, H. P., Sequeira, A. F., and Car-
doso, J. S. (2013). Robust iris segmentation under un-
constrained settings. In Proceedings of International
Conference on Computer Vision Theory and Applica-
tions (VISAPP), pages 180–190.
Monteiro, J. C., Sequeira, A. F., Oliveira, H. P., and Car-
doso, J. S. (2014). Robust iris localisation in challeng-
ing scenarios. In CCIS Communications in Computer
and Information Science. Springer-Verlag.
Pudil, P., Novovi
ˇ
cov
´
a, J., and Kittler, J. (1994). Floating
search methods in feature selection. Pattern recogni-
tion letters, 15(11):1119–1125.
Ratha, N. K., Connell, J. H., and Bolle, R. M. (2001). An
analysis of minutiae matching strength. In Audio-and
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
32