Helbing, D. and Moln
´
ar, P. (1995). Social force model for
pedestrian dynamics. Physical Review E, 51(5):4282–
4286.
Huang, T. (2008). Discriminative local binary patterns for
human detection in personal album. In 2008 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8. IEEE.
Kim, K., Chalidabhongse, T. H., Harwood, D., and Davis,
L. (2005). Real-time foreground–background seg-
mentation using codebook model. Real-Time Imaging,
11(3):172–185.
Lee, K., Choi, M., Hong, Q., and Lee, J. (2007). Group be-
havior from video: a data-driven approach to crowd
simulation. In Proceedings of the 2007 ACM . . . ,
pages 109–118, San Diego, California.
Lengvenis, P., Simutis, R., Vaitkus, V., and Maskeliunas, R.
(2013). Application Of Computer Vision Systems For
Passenger Counting In Public Transport. Electronics
and Electrical Engineering, 19(3):69–72.
Lerner, A. (2007). Crowds by example. Computer Graphics
Forum, 26(3):655–664.
Li, M., Zhang, Z., Huang, K., and Tan, T. (2009). Rapid
and robust human detection and tracking based on
omega-shape features. In 2009 16th IEEE Interna-
tional Conference on Image Processing (ICIP), pages
2545–2548. IEEE.
Li, T.-Y., wen Lin, J., Liu, Y.-L., and ming Hsu, C. (2002).
Interactively Directing Virtual Crowds in a Virtual En-
vironment. Conf Artif Real Telexistence, 10.
Millan, E., Hernandez, B., and Rudomin, I. (2006). Large
Crowds of Autonomous Animated Characters Using
Fragment Shaders and Level of Detail. In Wolf-
gang Engel, editor, ShaderX5: Advanced Rendering
Techniques, chapter Beyond Pix, pages 501—-510.
Charles River Media.
Moussa
¨
ıd, M., Perozo, N., Garnier, S., Helbing, D., and
Theraulaz, G. (2010). The walking behaviour of
pedestrian social groups and its impact on crowd dy-
namics. PloS one, 5(4):e10047.
Mukherjee, S. and Das, K. (2013). Omega Model
for Human Detection and Counting for applica-
tion in Smart Surveillance System. arXiv preprint
arXiv:1303.0633, 4(2):167–172.
Musse, S. R., Jung, C. R., Jacques, J. C. S., and Braun, A.
(2007). Using computer vision to simulate the motion
of virtual agents. Computer Animation and Virtual
Worlds, 18(2):83–93.
Ojala, T. (2002). Multiresolution gray-scale and rotation
invariant texture classification with local binary pat-
terns. Pattern Analysis and Machine Intelligence,
24(7):971–987.
Ond
ˇ
rej, J., Pettr
´
e, J., Olivier, A.-H., and Donikian, S.
(2010). A synthetic-vision based steering approach
for crowd simulation. ACM Transactions on Graph-
ics, 29(4):1.
Ozturk, O., Yamasaki, T., and Aizawa, K. (2009). Track-
ing of humans and estimation of body/head orienta-
tion from top-view single camera for visual focus of
attention analysis. Computer Vision Workshops (ICCV
Workshops), pages 1020–1027.
Pelechano, N. and Stocker, C. (2008). Being a part of
the crowd: towards validating VR crowds using pres-
ence. Proceedings of the 7th international joint con-
ference on Autonomous agents and multiagent sys-
tems, (Aamas):12–16.
Ren, Z., Gai, W., Zhong, F., Pettr
´
e, J., and Peng, Q. (2013).
Inserting virtual pedestrians into pedestrian groups
video with behavior consistency. The Visual Com-
puter.
Reynolds, C. W. (1987). Flocks, herds and schools: A dis-
tributed behavioral model. ACM SIGGRAPH Com-
puter Graphics, 21(4):25–34.
Rivalcoba, I. J. and Rudomin, I. (2013). Segmentaci
´
on de
peatones a partir de vistas a
´
ereas. In Research in Com-
puting Science, volume 62, pages 129–230.
Sun, L. and Qin, W. (2011). A Data-Driven Approach for
Simulating Pedestrian Collision Avoidance in Cross-
roads. 2011 Workshop on Digital Media and Digital
Content Management, pages 83–85.
Treuille, A., Cooper, S., and Popovi
´
c, Z. (2006). Continuum
crowds. ACM Transactions on Graphics, 25(3):1160.
Tuzel, O., Porikli, F., and Meer, P. (2007). Human De-
tection via Classification on Riemannian Manifolds.
2007 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1–8.
Van den Berg, J., Guy, S. J., Lin, M., and Manocha,
D. (2011). Reciprocal n-body collision avoidance.
Robotics Research, 70:3–19.
Van den Berg, J. and Manocha, D. (2008). Reciprocal Ve-
locity Obstacles for real-time multi-agent navigation.
In 2008 IEEE International Conference on Robotics
and Automation, pages 1928–1935. IEEE.
Viola, P. and Jones, M. (2001). Rapid object detection us-
ing a boosted cascade of simple features. Proceed-
ings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR
2001, 1:I–511–I–518.
Viola, P., Jones, M., and Snow, D. (2003). Detecting pedes-
trians using patterns of motion and appearance. Inter-
national Conference on Computer Vision, 63(2):153–
161.
Wang, X. and Sun, S. (2008). Data-Driven Macroscopic
Crowd Animation Synthesis Method using Velocity
Fields. 2008 International Symposium on Computa-
tional Intelligence and Design, pages 157–160.
Wang, Y., Dubey, R., Magnenat-Thalmann, N., and Thal-
mann, D. (2012). An immersive multi-agent system
for interactive applications. The Visual Computer,
29(5):323–332.
CouplingCamera-trackedHumanswithaSimulatedVirtualCrowd
321