Liquid Crystal Image Analysis by Image Descriptors

Guilherme Enoc Egas de Carvalho, Franklin César Flores, Fernando Carlos Messias Freire, Anderson Reginaldo Sampaio

2014

Abstract

Liquid crystals are substances with high impact technological, new substances have been discovered and the properties of these materials need to be examined. When viewed under a microscope using a polarized light source, different liquid crystal phases will appear to have distinct textures and colors. The use of digital image processing and computer vision is being initialized in the analysis of these materials. The goal of this work is to propose methods, based on visual descriptors, which are able to identify phase transitions and classify phases in liquid crystals from a sequence of images.

References

  1. Bahadur, B. (1992). Liquid Crystals - Applications and uses. World Scientific Pub Co Inc.
  2. Cess, G., Snoek, M. and Worring, M. (2005). Multimodal video indexing: A review of the state-of-the-art. Multimedia Tools and Applications, 25:5-35.
  3. Jain, R., Kasturi, R. and Schunck, B. (1995). Machine Vision, chapter 7. McGraw-Hill.
  4. Khokher, A. and Talwar, R. (2012). Content-based image retrieval: Feature extraction techniques and application. International Journal of Computer Applications, pages 356-361.
  5. Lew, M., Sabe, N., Djeraba, C. and Jain, R. (2006). Content-based multimedia information retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing, Communications, and Applications.
  6. Manjunath B. S., Salembier, P. and Sikora, T. (2002). Introduction to MPEG-7. John Wiley and Sons.
  7. Montrucchio, B., S. A. and Strigazzi, A. (1998). A new image processing method for enhancing the detection sensitivity of smooth transitions in liquid crystals. Liquid Crystals, 24(6):841-852.
  8. Sampaio, A., P. A. and C., V. (2004). Investigation of uniaxial and biaxial lyotropic nematic phase transitions by means of digital image processing. Molecular Crystals and Liquid Crystals, 408(1):45-51.
  9. Sastry, S., Kumari, T., Rao, C., Mallika, K., Lakshminarayana, S. and Ha Sie Tiong (2012). Transition temperatures of thermotropic liquid crystals fromthe local binary gray level cooccurrencematrix. Hindawi Publishing Corporation, 24:9.
  10. Snoek, C. and Worring, M. (2005). Multimodal video indexing: A review of the state-of-the-art. Multimedia Tools and Application, 25:5-35.
Download


Paper Citation


in Harvard Style

de Carvalho G., Flores F., Freire F. and Sampaio A. (2014). Liquid Crystal Image Analysis by Image Descriptors . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 531-537. DOI: 10.5220/0004695805310537


in Bibtex Style

@conference{visapp14,
author={Guilherme Enoc Egas de Carvalho and Franklin César Flores and Fernando Carlos Messias Freire and Anderson Reginaldo Sampaio},
title={Liquid Crystal Image Analysis by Image Descriptors},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={531-537},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004695805310537},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - Liquid Crystal Image Analysis by Image Descriptors
SN - 978-989-758-003-1
AU - de Carvalho G.
AU - Flores F.
AU - Freire F.
AU - Sampaio A.
PY - 2014
SP - 531
EP - 537
DO - 10.5220/0004695805310537