Photoluminescence Characterization of Zn- and Cs-Vanadate Phosphors

Tingting Li, Zentaro Honda, Takeshi Fukuda, Jiaolian Luo and Norihiko Kamata
Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo,
Sakura-ku, Saitama 338-8570, Japan

Keywords: $\quad \mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}, \mathrm{Csvo}_{3}, \mathrm{Cs}_{3} \mathrm{VO}_{4}$, Sol-gel Process, Quantum Yield.

Abstract

We synthesized $\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}, \mathrm{CsVO}_{3}$ and $\mathrm{Cs}_{3} \mathrm{VO}_{4}$ by sol-gel process and studied their crystalline and luminescent properties. By optimizing the sintering conditions, pure phases of aim samples including $\mathrm{Cs}_{3} \mathrm{VO}_{4}$ were obtained. The annealing temperatures of $450^{\circ} \mathrm{C}$ for $\mathrm{CsVO}_{3}, 600^{\circ} \mathrm{C}$ for $\mathrm{Cs}_{3} \mathrm{VO}_{4}$, respectively, are lower than that of $750^{\circ} \mathrm{C}$ for $\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ at the same duration of 12 h . $\mathrm{The}^{\mathrm{Cs}_{3} \mathrm{VO}_{4} \text { showed quantum yield of }}$ 90% with the half-width of 120 nm . It became clear that the Cs-V-O system, especially $\mathrm{Cs}_{3} \mathrm{VO}_{4}$, is promising for white LED applications.

1 INTRODUCTION

White light-emitting diodes (W-LEDs) are replacing traditional incandescent and fluorescent lamps due to their superior efficiency, lifetime, and controllability of lighting environment (Li et al., 2013). However, recent widespread W-LEDs, realized by blue LED and yellow phosphor of Cedoped yttrium aluminum garnet, lack red emission component and show a low color rendering index (CRI) (Kim et al., 2009). It is necessary, therefore, to find phosphor materials with higher CRI together with keeping efficiency and reliability. As a kind of efficient phosphor materials, a family of vanadates has been widely investigated for various types of WLEDs and flat-panel displays due to their better chromaticity (Huang et al., 2012); (Nakajima et al., 2009).

The VO4 unit of a central vanadium ion and coordinating four oxygen ions in a tetrahedral (Td) symmetry is known as the luminescent center of the vanadate group. Unlike sharp emission lines due to 4f transitions of rare earth ions as Eu3+, Tb3+ etc., a family of zinc and cesium vanadates, Zn 3 V 2 O 8 , CsVO 3 and Cs 3 VO 4 , shows efficient and broad emission spectra in a visible wavelength region. Each VO4 tetrahedron in Zn 3 V 2 O 8 is isolated in an orthorhombic structure, while that in CsVO 3 is twodimensionally arrayed as the VO4 sheet in an orthorhombic pyroxene structure (Nakajima et al.,
2010).

In the present work, we synthesized Zn 3 V 2 O , CsVO3 and Cs3VO4 by a sol-gel method and studied their X-ray diffraction (XRD) patterns, surface images, photoluminescence (PL), PL excitation (PLE) spectra and the value of PLquantum yield (QY). The synthesized Cs3VO4 was most efficient with the PL-QY of 90%. Different luminescence properties and synthesis conditions among three phosphors were discussed.

2 EXPERIMENTAL

2.1 Preparation

We chose $\mathrm{Zn}(\mathrm{CH} 3 \mathrm{COO}) 2 \cdot 2 \mathrm{H} 2 \mathrm{O}$, Cs 2 CO 3 and NH 4 VO 3 as starting materials of Zn 3 V 2 O 8 , CsVO 3 and Cs3VO4 by a sol-gel process. First, we weighed these starting materials, and dissolved them in aqueous ammonia, respectively. The first stirring step was performed for two hours with 250 rpm at room temperature (RT) in order to prevent the evaporation of aqueous ammonia and make sure that materials fully react with each other in ionic states. Then the temperature was increased to $80^{\circ} \mathrm{C}$ with keeping 250 rpm stirring until the solution became a semitransparent gel. Second, the semitransparent gel was dried at $120^{\circ} \mathrm{C}$ about 4 h , then ground thoroughly by a mortar, and transferred into a crucible which
was put into a sintering oven. After the sintering process, a yellowish powder of $\mathrm{CsVO} 3\left(450^{\circ} \mathrm{C}, 12 \mathrm{~h}\right)$ or a white powder of $\mathrm{Cs} 3 \mathrm{VO} 4\left(600^{\circ} \mathrm{C}, 12 \mathrm{~h}\right)$ were obtained.

In case of $\mathrm{Zn} 3 \mathrm{~V} 2 \mathrm{O} 8\left(750^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$, it also contained the phase of Zn 2 V 2 O 7 or Zn 4 V 2 O 9 . (Li et al., 2013) In order to obtain a uniform crystalline phase, the inchoate sample was placed into ethanol solution again. It was stirred first at 250 rpm for 2 h at RT, then raised the temperature to $80^{\circ} \mathrm{C}$ until the ethanol solution was completely removed. After that, we sintered it again at the temperature of $750^{\circ} \mathrm{C}$ during 24 h , and at last obtained a yellowish powder of pure Zn 3 V 2 O 8 .

2.2 Characterization

Synthesized samples were ground again and then transferred onto a glass plate, and the X-ray diffraction (XRD) patterns were measured by using a RINTUltimaIII (RIGAKU) diffractometer with Cu Ka radiation (40 kV 940 mA). The samples were identified by Joint Committee on Powder Diffraction Standards (JCPDS) files, and the relative percentages of each phase were estimated from the total area under the most intense diffraction peaks (Francisco et al., 2007). The surface morphology was observed by using a S-4100 (HITACHI) scanning electron microscopy (SEM)

The photoluminescence (PL) and PL excitation (PLE) spectra of each sample, pressed inside a circular dip of 4 mm diameter with 1 mm depth on a Cu -holder, were measured by a FluoroMax-3 (Horiba Jovin-Yvon) spectrophotometer. The PLQY was determined by a QEMS-2000 (Systems Engineering) by an excitation light of an LED with the peak wavelength of 375 nm . The PL-QY was obtained by a comparison between the PL spectrum of the sample and the scattered excitation light when a standard diffuser was placed at the sample position (Li et al., 2013). All measurements were performed at room temperature.

3 RESULTS AND DISCUSSION

3.1 Crystalline Phase Formations

Figure 1 shows the XRD patterns of synthesized samples with corresponding homologous databases. We can see that our experimental data of Zn 3 V 2 O 8 and CsVO3 agreed well with the standard PDF cards of No.34-0378 (Zn3V2O8) and No.033-0381 (CsVO3), respectively. No PDF data were found as
for the case of Cs3VO4 phosphor, but the principal patterns of our synthesis were consistent with those of a commercial powder from Alfa.

Figure 1: XRD patterns for vanadates.

Figure 2: SEM images for vanadate phosphors: (a) Zn3V2O8 $750^{\circ} \mathrm{C} 12 \mathrm{~h}$, (b) CsVO3 $450^{\circ} \mathrm{C} 12 \mathrm{~h}$, (c) Cs3VO4 $600^{\circ} \mathrm{C} 12 \mathrm{~h}$, and (d) Cs3VO4 $450^{\circ} \mathrm{C} 12 \mathrm{~h}$.

Surface morphologies of synthesized samples were observed by SEM. Resultant images of synthesized vanadates were shown in Figure 2(a)(d). In case of Zn 3 V 2 O 8 ($750^{\circ} \mathrm{C} 12 \mathrm{~h}$), each block throughout the observing volume seems to be homogeneously crystallized with a typical size of several $\mu \mathrm{m}$ as shown in Fig. 2(a).

Fairly irregular particles both on size and shape were observed in $\mathrm{CsVO} 3\left(450^{\circ} \mathrm{C} 12 \mathrm{~h}\right)$ as shown in Figure 2 (b). In contrast, the morphology of Cs3VO4 $\left(600^{\circ} \mathrm{C}\right.$ 12h) was relatively homogeneous with particle sizes about $1-3 \mu \mathrm{~m}$ as shown in Figure 2 (c). At $450{ }^{\circ} \mathrm{C} 12 \mathrm{~h}$, however, the dregs-like particles were found at the surface of the Cs 3 VO 4 as shown in Figure 2(d).

3.2 The Excitation and Emission Spectra

important for their application to W-LEDs.

4 CONCLUSIONS

In conclusion, vanadate phosphors of Zn 3 V 2 O 8 , CsVO 3 and Cs 3 VO 4 were synthesized by the sol-gel method. By comparing the difference of crystalline structure and luminescence properties among the three, the Cs3VO4 with the heating process at $600^{\circ} \mathrm{C}$ during 12 h showed highest PL-QY of 90% and is promising for the application to the W-LEDs.

Table 1: Comparison between the three vanadate phosphors.

Figure 3: The PLE (a) and PL (b) spectra of the vanadate phosphors.

Figure 3(a) and (b) show the PLE and PL spectra of these vanadate phosphors, respectively. The broad PLE band ranging from 300 nm to 400 nm enables these vanadates to be combined with UV or blue LEDs. Meanwhile, Zn3V2O8, CsVO3 and Cs3VO4 produce intense emission from yellowish white to mid white band with the FWHM of 180,110 and 120 nm , respectively. Meaningful spectral shifts were observed, though these originate from the same luminescence center VO4 at transitions among 3T2, 3 T 1 and 1A1 levels. Compared with the PLE and PL peaks of Zn 3 V 2 O , those of CsVO3 shift about 20 and 40 nm , and those of Cs 3 VO 4 about 30 and 60 nm , respectively.

3.3 The PL-Quantum Yield (PL-QY)

The PL-QY at 375 nm excitation is listed in Table 1 together with the synthesis condition, the FWHM, the peak wavelengths of the PLE and PL spectra. The QY value of 90% was obtained in the case of Cs3VO4 which is higher than that of 76% obtained by commercial powder from Alfa. We consider that the difference between Cs 3 VO 4 and CsVO 3 is

REFERENCES

C. Li et al, 2013. 'Photoluminescence and energy transfer studies on Ce3+/Eu2+ co-doped Ba3Si6O12N2 phosphor for white light emitting diodes'. Opt. Communications 295, pp. 129-133.
J. Kim et al, 2009. 'Nanocrystalline Y3A15O12:Ce phosphor-based white light-emitting diodes embedded with CdS:Mn/ZnS core/shell quantum dots'. Mater Lett 63, pp. 614-616.
Y. Huang et al, 2012. 'Novel yellow-emitting phosphors of Ca5M4 (VO4)6 ($\mathrm{M}=\mathrm{Mg}, \mathrm{Zn}$) with isolated VO4 tetrahedra'. Opt. Express 20(4), pp. 4360-4367.
T. Nakajima et al, 2009. 'A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn)'. J. Lumin. 129(12), pp. 1598-1601.
T. Nakajima et al. 2010. 'Correlation between Luminescence Quantum Efficiency and Structural Properties of Vanadate Phosphors with Chained, Dimerized, and Isolated VO4 Tetrahedra'. J, Phys, Chem. C, 114, pp. 5160-5167.
T. Li, Z. Honda et al, 2013. 'Fabrication and characterization of Zn 3 V 2 O 8 phosphor by sol-gel process'. J Sol-Gel Sci Technol 66, pp. 225-230.
M. M. Francisco, J. V. Miriam, P. Heriberto, 2007. 'Micro-structural development of ZnO pellets doped with different Vanadium Oxides (V2O5 and V2O3)', Int. J. Appl. Ceram. Technol., 4(6), pp. 564-570.

