tigue and task control: planning and preparation. Psy-
chophysiology, 37(5):614–25.
Mandryk, R., Inkpen, K., and Calvert, T. (2006). Using
psychophysiological techniques to measure user ex-
perience with entertainment technologies. Behav. &
Inf. Tech.
Mathan, S., Whitlow, S., and Feyereisen, T. (2007). Work-
Sense: Exploring the Feasibility of Human Factors
Assessment using Electrophysiological Sensors. In
4th IACS.
Matthews, G., Campbell, S. E., Falconer, S., Joyner, L. a.,
Huggins, J., Gilliland, K., Grier, R., and Warm, J. S.
(2002). Fundamental dimensions of subjective state in
performance settings: Task engagement, distress, and
worry. Emotion, 2(4):315–340.
Milekovic, T., Ball, T., Schulze-Bonhage, A., Aertsen, A.,
and Mehring, C. (2013). Detection of error related
neuronal responses recorded by electrocorticography
in humans during continuous movements. PloS one,
8(2).
M
¨
uhl, C., Brouwer, A., van Wouwe, N., van den Broek,
E. L., Nijboer, F., and Heylen, D. (2011). Modality-
specific Affective Responses and their Implications
for Affective BCI. In 5th Int. BCI Conf., pages 120–
123.
Mustafa, M., Lindemann, L., and Magnor, M. (2012). EEG
analysis of implicit human visual perception. CHI ’12,
page 513.
Nacke, L., Ambinder, M., Canossa, A., Mandryk, R., and
Stach, T. (2009). Game Metrics and Biometrics: The
Future of Player Experience Research. Future Play.
Nacke, L. E. and Lindley, C. A. (2009). Affective ludology,
flow and immersion in a first-person shooter: Mea-
surement of player experience. J. Can. Game Stud.
Ass., 3(5).
Nacke, L. E., Stellmach, S., and Lindley, C. A. (2010).
Electroencephalographic Assessment of Player Expe-
rience: A Pilot Study in Affective Ludology. SAG,
42(5):632–655.
Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band,
G. P., and Kok, A. (2001). Error-related brain po-
tentials are differentially related to awareness of re-
sponse errors: evidence from an antisaccade task. Psy-
chophysiology, 38(5):752–60.
Nisbett, R. E. and Wilson, T. D. (1977). Telling more than
we can know: Verbal reports on mental processes.
Psychological Review, 84(3):231–260.
Ogolla, J. A. (2011). Usability Evaluation: Tasks Suscepti-
ble to Concurrent Think-Aloud Protocol. Master the-
sis, Link
¨
oping University.
Oken, B. S., Salinsky, M. C., and Elsas, S. M. (2006).
Vigilance, alertness, or sustained attention: physio-
logical basis and measurement. Clin Neurophysiol,
117(9):1885–901.
Parasuraman, R. (2013). Neuroergonomics: Brain-Inspired
Cognitive engineering. In The Oxford Handbook Of
Cog. Engin., page 672. Oxford University Press, USA.
Partala, T. and Surakka, V. (2003). Pupil size variation as an
indication of affective processing. International Jour-
nal of Human-Computer Studies, 59(1-2):185–198.
Picard, R. W. (1995). Affective computing. Technical Re-
port 321, MIT Media Laboratory.
Pike, M., Wilson, M., Divoli, A., and Medelyan, A. (2012).
CUES: Cognitive Usability Evaluation System. Euro-
HCIR ’12, pages 1–4.
Posner, J., Russell, J. a., and Peterson, B. S. (2005). The
circumplex model of affect: an integrative approach
to affective neuroscience, cognitive development, and
psychopathology. Dev. Psychopathol., 17(3):715–34.
Ravaja, N. (2009). FUGA: The Fun of Gaming: Measur-
ing the Human Experience of Media Enjoyment. Final
Activity Report. Technical report.
Saavedra, C. and Bougrain, L. (2012). Processing Stages
of Visual Stimuli and Event-Related Potentials. The
NeuroComp/KEOpS’12 workshop, 2:1–5.
Schalk, G., Wolpaw, J. R., McFarland, D. J., and
Pfurtscheller, G. (2000). EEG-based communication:
presence of an error potential. Clin. Neurophysiol.,
111(12):2138–44.
Schmidt, N. M., Blankertz, B., and Treder, M. S. (2012).
Online detection of error-related potentials boosts the
performance of mental typewriters. BMC neurosc.,
13(1):19.
Scholler, S., Bosse, S., Treder, M. S., Blankertz, B., Curio,
G., M
¨
uller, K.-R., and Wiegand, T. (2012). Toward a
direct measure of video quality perception using EEG.
IEEE Trans. Image Process., 21(5):2619–29.
Shaw, J. C. (2003). The brain’s alpha rhythms and the mind.
Elsevier.
Slater, M., Lotto, B., Arnold, M., and Sanchez-Vives, M.
(2009). How we experience immersive virtual envi-
ronments: the concept of presence and its measure-
ment. Anuario de psicolog
´
ıa, 40(2773):193–210.
Sobolewski, A., Chavarriaga, R., and Mill
´
an, J. (2013). Er-
ror Processing of Self-paced Movements. In TOBI
Workshop IV, pages 137–138.
Trachel, R., Brochier, T., and Clerc, M. (2013). Enhanc-
ing visuospatial attention performance with brain-
computer interfaces. CHI ’13, page 1245.
van de Laar, B., G
¨
urk
¨
ok, H., Bos, D. P.-O., Nijboer, F.,
and Nijholt, A. (2013). Brain-Computer Interfaces
and User Experience Evaluation. In Towards Practical
Brain-Computer Interfaces, pages 223–237. Springer.
van Erp, J. B. F., Veltman, H., and Grootjen, M. (2010).
Brain-Based Indices for User System Symbiosis. In
Brain-Computer Interfaces, pages 201–219. Springer,
London.
Vecchiato, G., Astolfi, L., De Vico Fallani, F., Toppi, J.,
Aloise, F., Bez, F., Wei, D., Kong, W., Dai, J., Cin-
cotti, F., Mattia, D., and Babiloni, F. (2011). On
the use of EEG or MEG brain imaging tools in
neuromarketing research. Comput Intell Neurosci,
2011:643489.
Vi, C. and Subramanian, S. (2012). Detecting error-related
negativity for interaction design. CHI ’12, page 493.
Weber, J. (2007). Think Aloud Best Practices Study.
Zander, T. O. and Kothe, C. (2011). Towards passive brain-
computer interfaces: applying brain-computer inter-
face technology to human-machine systems in gen-
eral. J. Neural. Eng, 8(2):025005.
ReviewoftheUseofElectroencephalographyasanEvaluationMethodforHuman-ComputerInteraction
223