0
20
40
60
80
100
120
140
160
180
Figure 8: Cumulative parameterisation error compared to the ground truth. Octahedron (spherical) parameterisation outper-
forms regular 2D parameterisation.
ACKNOWLEDGEMENTS
This work has been made possible with the help of
a PhD specialization bursary from the IWT. The au-
thors acknowledge financial support from the Euro-
pean Commission (FP7 IP SCENE).
REFERENCES
Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I.
(1992). Image coding using wavelet transform. IEEE
Transactions on Image Processing, 1(2):205–220.
Bilgili, A.,
¨
Ozt
¨
urk, A., and Kurt, M. (2011). A general brdf
representation based on tensor decomposition. Com-
put. Graph. Forum, 30(8):2427–2439.
Bonneau, G.-P. (1999). Optimal triangular haar bases for
spherical data. LMC - CRNS.
Dutr
´
e, P., Bala, K., and Bekaert, P. (2006). Ad-
vanced global illumination, 2nd edition. A K Peters
(http://www.akpeters.com/).
Haber, T., Fuchs, C., Bekaert, P., Seidel, H.-P., Goesele, M.,
and Lensch, H. P. A. (2009). Relighting objects from
image collections.
Kajiya, J. T. (1986). The rendering equation. In Pro-
ceedings of the 13th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’86,
pages 143–150, New York, NY, USA. ACM.
Lessig, C. (2007). Orthogonal and symmetric haar wavelets
on the sphere. Master thesis - University of Toronto.
Ma, W.-C., Hsiao, C.-T., Lee, K.-Y., Chuang, Y.-Y., and
Chen, B.-Y. (2006). Real-time triple product relight-
ing using spherical local-frame parameterization. Vis.
Comput., 22(9):682–692.
Matusik, W., Pfister, H., Brand, M., and McMillan, L.
(2003). A data-driven reflectance model. ACM Trans-
actions on Graphics, 22(3):759–769.
Ng, R., Ramamoorthi, R., and Hanrahan, P. (2004). Triple
product wavelet integrals for all-frequency relighting.
ACM Trans. Graph., 23(3):477–487.
Ngan, A., Durand, F., and Matusik, W. (2005). Experi-
mental analysis of brdf models. In Proceedings of
the Sixteenth Eurographics conference on Rendering
Techniques, EGSR’05, pages 117–126, Aire-la-Ville,
Switzerland, Switzerland. Eurographics Association.
Okabe, T., Sato, I., and Sato, Y. (2004). Spherical harmon-
ics vs. haar wavelets: Basis for recovering illumina-
tion from cast shadows. In Shadows, Proc. Conf. Com-
puter Vision and Pattern Recognition, pages 50–57.
Praun, E. and Hoppe, H. (2003a). Spherical parametrization
and remeshing. ACM Trans. Graph., 22(3):340–349.
Praun, E. and Hoppe, H. (2003b). Spherical parametrization
and remeshing. ACM TOG, 22(3):340–349.
Ruiters, R. and Klein, R. (2010). A compact and editable
representation for measured brdfs. Technical Report
CG-2010-1, University of Bonn.
Schr
¨
oder, P. and Sweldens, W. (1995). Spherical wavelets:
Efficiently representing functions on the sphere. Uni-
versity of South Carolina.
Sun, W. and Mukherjee, A. (2006). Generalized wavelet
product integral for rendering dynamic glossy objects.
In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06,
pages 955–966, New York, NY, USA. ACM.
Tsai, Y.-T., Chang, C.-C., Jiang, Q.-Z., and Weng, S.-C.
(2008). Importance sampling of products from illumi-
nation and brdf using spherical radial basis functions.
The Visual Computer, 24(7-9):817–826.
Yu, T., Wang, H., Ahuja, N., and Chen, W.-C. (2006).
Sparse lumigraph relighting by illumination and re-
flectance estimation from multi-view images. In ACM
SIGGRAPH 2006 Sketches, SIGGRAPH ’06, New
York, NY, USA. ACM.
GRAPP2014-InternationalConferenceonComputerGraphicsTheoryandApplications
224