transparent. This is done to improve the visual ap-
pearance of the tubes and to concentrate on the focus
of the camera. Furthermore, we like to use the GPU to
get a real-time interaction while changing the param-
eters of the cluster algorithm yielding an immediate
result in the 3D cluster visualization after parameter
changes.
ACKNOWLEDGEMENTS
This work was supported by the DFG Priority Pro-
gram 1335: Scalable Visual Analytics.
REFERENCES
Aono, M. and Kobayashi, M. (2011). Text Document Clus-
ter Analysis Through Visualization of 3D Projections.
Technical report, IBM Research - Tokyo.
Blinn, J. F. (1982). A Generalization of Algebraic Surface
Drawing. ACM Trans. Graph., 1(3):235–256.
Glaßer, S., Niemann, U., Preim, B., and Spiliopoulou, M.
(2013). Can we Distinguish Between Benign and Ma-
lignant Breast Tumors in DCE-MRI by Studying a Tu-
mor’s Most Suspect Region Only? In Proc. of the
IEEE Symposium on Computer-Based Medical Sys-
tems, pages 59–64.
G
¨
unther, T., B
¨
urger, K., Westermann, R., and Theisel, H.
(2011). A View-Dependent and Inter-Frame Coherent
Visualization of Integral Lines using Screen Contribu-
tion. In Proc. of Vision, Modeling, and Visualization,
pages 215–222.
Healey, C., Stamant, R., and Chang, J. (2001). Assisted Vi-
sualization of E-Commerce Auction Agents. Graph-
ics Interface, 1:201–208.
Inselberg, A. and Dimsdale, B. (1990). Parallel Coordi-
nates: A Tool for Visualizing Multi-Dimensional Ge-
ometry. In Proc. of the IEEE Conf. on Visualization,
pages 361–378.
Kosara, R., Sahling, G. N., and Hauser, H. (2004). Linking
Scientific and Information Visualization with Interac-
tive 3D Scatterplots. In Proc. of WSCG Short Com-
munication Papers, pages 133–140.
Linsen, L., Van Long, T., Rosenthal, P., and Rosswog, S.
(2008). Surface Extraction from Multi-Field Parti-
cle Volume Data using Multi-Dimensional Cluster Vi-
sualization. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1483–1490.
Lundstr
¨
om, C. and Persson, A. (2011). Characterizing Vi-
sual Analytics in Diagnostic Imaging. In Proc. of the
EuroVA International Workshop on Visual Analytics,
pages 1–4.
Maciejewski, R., Jang, Y., Woo, I., J
¨
anicke, H., Gaither,
K., and Ebert, D. (2013). Abstracting Attribute Space
for Transfer Function Exploration and Design. IEEE
Transactions on Visualization and Computer Graph-
ics, 19(1):94–107.
Maciejewski, R., Woo, I., Chen, W., and Ebert, D. (2009).
Structuring Feature Space: A Non-Parametric Method
for Volumetric Transfer Function Generation. IEEE
Transactions on Visualization and Computer Graph-
ics, 15(6):1473–1480.
Moberts, B., Vilanova, A., and van Wijk, J. J. (2005). Eval-
uation of Fiber Clustering Methods for Diffusion Ten-
sor Imaging. IEEE Visualization, pages 65–72.
Oeltze, S., Doleisch, H., Hauser, H., Muigg, P., and Preim,
B. (2007). Interactive Visual Analysis of Perfusion
Data. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1392–1399.
Piringer, H., Kosara, R., and Hauser, H. (2004). Inter-
active focus+ context visualization with linked 2d/3d
scatterplots. In Proc. of the Conference on Coordi-
nated and Multiple Views in Exploratory Visualiza-
tion, pages 49–60. IEEE.
Poco, J., Etemadpour, R., Paulovich, F. V., Long, T. V.,
Rosenthal, P., Oliveira, M. C. F., Linsen, L., and
Minghim, R. (2011). A Framework for Exploring
Multidimensional Data with 3D Projections. Com-
puter Graphics Forum, 30(3):1111–1120.
Preim, U., Glaßer, S., Preim, B., Fischbach, F., and Ricke,
J. (2012). Computer-aided diagnosis in breast DCE-
MRI – Quantification of the heterogeneity of breast
lesions. European Journal of Radiology, 81(7):1532
– 1538.
Quigley, A. J. (2001). Large scale 3d clustering and abstrac-
tion. In Selected papers from the Pan-Sydney work-
shop on Visualisation, volume 2 of VIP ’00, pages
117–118.
Sanftmann, H. and Weiskopf, D. (2009). Illuminated 3D
Scatterplots. Computer Graphics Forum, 28(3):751–
758.
Schreck, T., Sch
¨
ußler, M., Zeilfelder, F., and Worm, K.
(2008). Butterfly Plots for Visual Analysis of Large
Point Cloud Data. In Proc. of Conf. on Computer
Graphics, Visualization and Computer Vision, pages
33–40.
Sereda, P., Gerritsen, F. A., and Vilanova, A. (2006). Mir-
rored lh Histograms for the Visualization of Material
Boundaries. In Proc. of Vision, Modeling, and Visual-
ization, pages 237–244.
Speckmann, B. and Verbeek, K. (2010). Necklace Maps.
IEEE Transactions on Visualization and Computer
Graphics, 16(6):881–889.
Wong, P. C. and Bergeron, R. D. (1997). 30 Years of Mul-
tidimensional Multivariate Visualization. In Nielson,
G. M., H. H. and Muller, H., editors, Scientific Visual-
ization - Overviews, Methodologies, and Techniques,
pages 3–33. IEEE Computer Society Press.
Yang, Y., Chen, J. X., and Kim, W. (2003). Gene expression
clustering and 3d visualization. Computing in Science
& Engineering, 5(5):37–43.
Zhang, L., Sheng, W., and Liu, X. (2006). 3D Visualization
of Gene Clusters. In Proc. of Conf. in Computer Vision
and Graphics, pages 349–354.
GRAPP2014-InternationalConferenceonComputerGraphicsTheoryandApplications
176