Topological Space Partition for Fast Ray Tracing in Architectural Models
Maxime Maria, Sébastien Horna, Lilian Aveneau
2014
Abstract
Fast ray-tracing requires an efficient acceleration structure. For architectural environment, the most famous is the cells-and-portals one. Many previous works attempt to automatically construct a good cells-and-portals. We propose a new acceleration structure which extends the classical cells-and-portals. It is automatically extracted from the topological model of a given building. It contains a low number of large volumes, all of them linked into a graph model. The scan of our structure is particularly simple and rapid, using all the topological information available from the topological model. The scan can be done for a single ray, or a wide ray packet. We show in this paper that our structure allows an interactive rendering even for large building models, with direct lighting from some thousands of point lights.
References
- Airey, J. M., Rohlf, J. H., and Brooks, Jr., F. P. (1990). Towards image realism with interactive update rates in complex virtual building environments. SIGGRAPH Comput. Graph., 24(2):41-50.
- Appel, A. (1968). Some techniques for shading machine renderings of solids. In Proceedings of the April 30-May 2, 1968, Spring Joint Computer Conference, AFIPS 7868 (Spring), pages 37-45. ACM.
- Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9):509-517.
- Charneau, S., Aveneau, L., and Fuchs, L. (2007). Exact, robust and efficient full visibility computation in the Plücker space. Visual Computer, 23(9-11):773-782.
- Cook, R. L., Porter, T., and Carpenter, L. (1984). Distributed ray tracing. SIGGRAPH Comput. Graph., 18(3):137-145.
- Ernst, M. and Woop, S. (2011). Embree: Photo-realistic ray tracing kernels.
- Fang, Q. (2010). Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomed. Opt. Express, 1(1):165-175.
- Fernández, J., T óth, B., Cánovas, L., and Pelegrín, B. (2008). A practical algorithm for decomposing polygonal domains into convex polygons by diagonals. TOP, 16(2):367-387.
- Fradin, D., Meneveaux, D., and Horna, S. (2005). Out-ofcore photon-mapping for large buldings. In Proceedings of Eurographics symposium on Rendering.
- Fradin, D., Meneveaux, D., and Lienhardt, P. (2006). A hierarchical topology-based model for handling complex indoor scenes. Computer Graphics Forum, 25(2):149-162.
- Fuchs, H., Kedem, Z. M., and Naylor, B. F. (1980). On visible surface generation by a priori tree structures. SIGGRAPH Comput. Graph., 14(3):124-133.
- Fujimoto, A., Tanaka, T., and Iwata, K. (1988). Arts: accelerated ray-tracing system. In Grant, C. W. and Hatfield, L., editors, Tutorial: computer graphics; image synthesis, pages 148-159. Computer Science Press.
- Glassner, A. S., editor (1989). An introduction to ray tracing. Academic Press Ltd., London, UK, UK.
- Goldsmith, J. and Salmon, J. (1987). Automatic creation of object hierarchies for ray tracing. IEEE Comput. Graph. Appl., 7(5):14-20.
- Havran, V. (2000). Heuristic Ray Shooting Algorithms. Ph.d. thesis, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague.
- Horna, S., Damiand, G., Meneveaux, D., and Bertrand, Y. (2007). Building 3d indoor scenes topology from 2d architectural plans. In Conference on Computer Graphics Theory and Applications. GRAPP'2007.
- Horna, S., Meneveaux, D., Damiand, G., and Bertrand, Y. (2009). Consistency constraints and 3d building reconstruction. Computer-Aided Design, 41(1):13-27.
- Kay, T. L. and Kajiya, J. T. (1986). Ray tracing complex scenes. SIGGRAPH Comput. Graph., 20(4):269-278.
- Lienhardt, P. (1994). N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal on Computational Geometry and Applications, 4(3):275-324.
- Luebke, D. and Georges, C. (1995). Portals and mirrors: simple, fast evaluation of potentially visible sets. In Proceedings of the 1995 symposium on Interactive 3D graphics, I3D 7895, pages 105-ff.
- MacDonald, D. J. and Booth, K. S. (1990). Heuristics for ray tracing using space subdivision. Vis. Comput., 6(3):153-166.
- Meneveaux, D., Maisel, E., and Bouatouch, K. (1998). A new partitioning method for architectural environments. Journal of Vizualisation and Computer Animation, 9(4):195-213.
- Mora, F., Aveneau, L., Apostu, O., and Ghazanfarpour, D. (2012). Lazy visibility evaluation for exact soft shadows. Comput. Graph. Forum, 31(1):132-145.
- Parker, S., Martin, W., Sloan, P.-P. J., Shirley, P., Smits, B., and Hansen, C. (1999). Interactive ray tracing. In Proceedings of the 1999 symposium on Interactive 3D graphics, I3D 7899, pages 119-126. ACM.
- Plücker, J. (1865). On a new geometry of space. Philosophical Transactions of the Royal Society of London, 155:725-791.
- Rubin, S. M. and Whitted, T. (1980). A 3-dimensional representation for fast rendering of complex scenes. SIGGRAPH Comput. Graph., 14(3):110-116.
- Shoemake, K. (1998). Plücker coordinate tutorial. Ray Tracing News 11.
- Teller, S., Fowler, C., Funkhouser, T., and Hanrahan, P. (1994). Partitioning and ordering large radiosity computations. SIGGRAPH Comput. Graph., pages 443- 450.
- Teller, S. and Hanrahan, P. (1993). Global visibility algorithms for illumination computations. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7893, pages 239-246, New York, NY, USA. ACM.
- Teller, S. J. and Séquin, C. H. (1991). Visibility preprocessing for interactive walkthroughs. SIGGRAPH Comput. Graph., 25(4):61-70.
- Wald, I., Slusallek, P., Benthin, C., and Wagner, M. (2001). Interactive rendering with coherent ray tracing. In Computer Graphics Forum, pages 153-164.
- Whitted, T. (1980). An improved illumination model for shaded display. Commun. ACM, 23(6):343-349.
Paper Citation
in Harvard Style
Maria M., Horna S. and Aveneau L. (2014). Topological Space Partition for Fast Ray Tracing in Architectural Models . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 225-235. DOI: 10.5220/0004720402250235
in Bibtex Style
@conference{grapp14,
author={Maxime Maria and Sébastien Horna and Lilian Aveneau},
title={Topological Space Partition for Fast Ray Tracing in Architectural Models},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},
year={2014},
pages={225-235},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004720402250235},
isbn={978-989-758-002-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - Topological Space Partition for Fast Ray Tracing in Architectural Models
SN - 978-989-758-002-4
AU - Maria M.
AU - Horna S.
AU - Aveneau L.
PY - 2014
SP - 225
EP - 235
DO - 10.5220/0004720402250235