Topological Space Partition for Fast Ray Tracing in Architectural Models

Maxime Maria, Sébastien Horna, Lilian Aveneau

2014

Abstract

Fast ray-tracing requires an efficient acceleration structure. For architectural environment, the most famous is the cells-and-portals one. Many previous works attempt to automatically construct a good cells-and-portals. We propose a new acceleration structure which extends the classical cells-and-portals. It is automatically extracted from the topological model of a given building. It contains a low number of large volumes, all of them linked into a graph model. The scan of our structure is particularly simple and rapid, using all the topological information available from the topological model. The scan can be done for a single ray, or a wide ray packet. We show in this paper that our structure allows an interactive rendering even for large building models, with direct lighting from some thousands of point lights.

References

  1. Airey, J. M., Rohlf, J. H., and Brooks, Jr., F. P. (1990). Towards image realism with interactive update rates in complex virtual building environments. SIGGRAPH Comput. Graph., 24(2):41-50.
  2. Appel, A. (1968). Some techniques for shading machine renderings of solids. In Proceedings of the April 30-May 2, 1968, Spring Joint Computer Conference, AFIPS 7868 (Spring), pages 37-45. ACM.
  3. Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9):509-517.
  4. Charneau, S., Aveneau, L., and Fuchs, L. (2007). Exact, robust and efficient full visibility computation in the Plücker space. Visual Computer, 23(9-11):773-782.
  5. Cook, R. L., Porter, T., and Carpenter, L. (1984). Distributed ray tracing. SIGGRAPH Comput. Graph., 18(3):137-145.
  6. Ernst, M. and Woop, S. (2011). Embree: Photo-realistic ray tracing kernels.
  7. Fang, Q. (2010). Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomed. Opt. Express, 1(1):165-175.
  8. Fernández, J., T óth, B., Cánovas, L., and Pelegrín, B. (2008). A practical algorithm for decomposing polygonal domains into convex polygons by diagonals. TOP, 16(2):367-387.
  9. Fradin, D., Meneveaux, D., and Horna, S. (2005). Out-ofcore photon-mapping for large buldings. In Proceedings of Eurographics symposium on Rendering.
  10. Fradin, D., Meneveaux, D., and Lienhardt, P. (2006). A hierarchical topology-based model for handling complex indoor scenes. Computer Graphics Forum, 25(2):149-162.
  11. Fuchs, H., Kedem, Z. M., and Naylor, B. F. (1980). On visible surface generation by a priori tree structures. SIGGRAPH Comput. Graph., 14(3):124-133.
  12. Fujimoto, A., Tanaka, T., and Iwata, K. (1988). Arts: accelerated ray-tracing system. In Grant, C. W. and Hatfield, L., editors, Tutorial: computer graphics; image synthesis, pages 148-159. Computer Science Press.
  13. Glassner, A. S., editor (1989). An introduction to ray tracing. Academic Press Ltd., London, UK, UK.
  14. Goldsmith, J. and Salmon, J. (1987). Automatic creation of object hierarchies for ray tracing. IEEE Comput. Graph. Appl., 7(5):14-20.
  15. Havran, V. (2000). Heuristic Ray Shooting Algorithms. Ph.d. thesis, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague.
  16. Horna, S., Damiand, G., Meneveaux, D., and Bertrand, Y. (2007). Building 3d indoor scenes topology from 2d architectural plans. In Conference on Computer Graphics Theory and Applications. GRAPP'2007.
  17. Horna, S., Meneveaux, D., Damiand, G., and Bertrand, Y. (2009). Consistency constraints and 3d building reconstruction. Computer-Aided Design, 41(1):13-27.
  18. Kay, T. L. and Kajiya, J. T. (1986). Ray tracing complex scenes. SIGGRAPH Comput. Graph., 20(4):269-278.
  19. Lienhardt, P. (1994). N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal on Computational Geometry and Applications, 4(3):275-324.
  20. Luebke, D. and Georges, C. (1995). Portals and mirrors: simple, fast evaluation of potentially visible sets. In Proceedings of the 1995 symposium on Interactive 3D graphics, I3D 7895, pages 105-ff.
  21. MacDonald, D. J. and Booth, K. S. (1990). Heuristics for ray tracing using space subdivision. Vis. Comput., 6(3):153-166.
  22. Meneveaux, D., Maisel, E., and Bouatouch, K. (1998). A new partitioning method for architectural environments. Journal of Vizualisation and Computer Animation, 9(4):195-213.
  23. Mora, F., Aveneau, L., Apostu, O., and Ghazanfarpour, D. (2012). Lazy visibility evaluation for exact soft shadows. Comput. Graph. Forum, 31(1):132-145.
  24. Parker, S., Martin, W., Sloan, P.-P. J., Shirley, P., Smits, B., and Hansen, C. (1999). Interactive ray tracing. In Proceedings of the 1999 symposium on Interactive 3D graphics, I3D 7899, pages 119-126. ACM.
  25. Plücker, J. (1865). On a new geometry of space. Philosophical Transactions of the Royal Society of London, 155:725-791.
  26. Rubin, S. M. and Whitted, T. (1980). A 3-dimensional representation for fast rendering of complex scenes. SIGGRAPH Comput. Graph., 14(3):110-116.
  27. Shoemake, K. (1998). Plücker coordinate tutorial. Ray Tracing News 11.
  28. Teller, S., Fowler, C., Funkhouser, T., and Hanrahan, P. (1994). Partitioning and ordering large radiosity computations. SIGGRAPH Comput. Graph., pages 443- 450.
  29. Teller, S. and Hanrahan, P. (1993). Global visibility algorithms for illumination computations. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7893, pages 239-246, New York, NY, USA. ACM.
  30. Teller, S. J. and Séquin, C. H. (1991). Visibility preprocessing for interactive walkthroughs. SIGGRAPH Comput. Graph., 25(4):61-70.
  31. Wald, I., Slusallek, P., Benthin, C., and Wagner, M. (2001). Interactive rendering with coherent ray tracing. In Computer Graphics Forum, pages 153-164.
  32. Whitted, T. (1980). An improved illumination model for shaded display. Commun. ACM, 23(6):343-349.
Download


Paper Citation


in Harvard Style

Maria M., Horna S. and Aveneau L. (2014). Topological Space Partition for Fast Ray Tracing in Architectural Models . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 225-235. DOI: 10.5220/0004720402250235


in Bibtex Style

@conference{grapp14,
author={Maxime Maria and Sébastien Horna and Lilian Aveneau},
title={Topological Space Partition for Fast Ray Tracing in Architectural Models},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},
year={2014},
pages={225-235},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004720402250235},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - Topological Space Partition for Fast Ray Tracing in Architectural Models
SN - 978-989-758-002-4
AU - Maria M.
AU - Horna S.
AU - Aveneau L.
PY - 2014
SP - 225
EP - 235
DO - 10.5220/0004720402250235