workgroups on diagnostic guidelines for Alzheimer’s
disease. Alzheimer’s & Dementia, 7, pp. 270-279.
Bandt, C., Pompe, B., 2002. Permutation entropy- a
natural complexity measure for time series. Physical
Review Letters, 88(17), 174102.
Bian, C., Qin, C., Ma, Q. D. Y., Shen, Q., 2012. Modified
permutation-entropy analysis of heartbeat dynamics.
Physical Review E, 85, 021906.
Cao, Y., Tung, W., Gao, J. B., Protopopescu, V. A.,
Hively, L. M., 2004. Detecting dynamical changes in
time series using the permutation entropy. Physical
Review E, 70, 046217.
Dauwels, J., Srinivasan, K., Ramasubba Reddy, M.,
Musha, T., Vialatte, F.-B., Latchoumane, C., Jeong, J.,
Cichocki, A., 2011. Slowing and loss of complexity in
Alzheimer’s EEG: Two sides of the same coin?.
International Journal of Alzheimer’s Disease, 2011,
539621.
Dauwels, J., Vialatte, F., Cicjocki, A., 2010. Diagnosis of
Alzheimer’s disease from EEG signals: Where are we
standing?. Current Alzheimer’s Research, 7, pp. 487-
505.
Escudero, J., Abásolo, D., Hornero, R., Espino, P., López,
M., 2006. Analysis of electroencephalograms in
Alzheimer’s disease patients with multiscale entropy.
Physiological Measurement, 27, pp. 1091-1106.
Fadlallah, B., Chen, B., Keil, A., Príncipe, J., 2013.
Weighted-permutation entropy: A complexity measure
for time series incorporating amplitude information.
Physical Review E, 87, pp. 022911.
Fawcett, T., 2006. An introduction to ROC analysis.
Pattern Recognition Letters, 27, pp. 861-874.
Folstein, M. F., Folstein, S. E., McHugh, P. R., 1975.
Mini-mental state. A practical method for grading the
cognitive state of patients for the clinician. American
Journal of Physiology: Heart and Circulatory
Physiology, 12, pp. 189-198.
Frantzidis, C. A., Ladas, A., Diamantoudi, M. D.,
Semertzidou, A., Grigoriadou, E., Tsolaki, A., Liapi,
D., Papadopoulou, A., Kounti, F., Vivas, A.B.,
Tsolaki, M., Pappas, C., Bamidis, P.D., 2012. What
are the symbols of Alzheimer? A permutation entropy
based symbolic analysis for the detection of early
changes of the electroencephalographic complexity
due to mild Alzheimer. In Proceedings of the 12
th
International Conference on Bioinformatics, IEEE.
Li, D., Liang, Z., Wang, Y., Hagihira, S., Sleigh, J. W., Li,
X., 2013. Parameter selection in permutation entropy
for an electroencephalographic measure of isoflurane
anesthetic drug effect. Journal of Clinical Monitoring
and Computing, 27, pp. 113-123.
McKann, G. M., Knopman, D. S.,. Chertkow, H., Hyman,
B. T., Jack, C. R., Kawas, C. H., Klunk, W. E.,
Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R.
C., Morris, J. C., Rossor, M.N., Scheltens, P., Carrillo,
M. C., Thies, B., Weintraub, S., Phelps, C. H., 2011.
The diagnosis of dementia due to Alzheimer’s disease:
Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on
diagnostic guidelines for Alzheimer’s disease.
Alzheimer’s & Dementia, 7, pp. 263-269.
Morabito, G., Bramanti, A., Labate, D., la Foresta, F.,
Morabito, F.C., 2011. Early detection of Alzheimer’s
onset with permutation entropy analysis of EEG.
Natural Intelligence: the INNS Magazine, 1(1), pp. 30-
32.
Morabito, F. C., Labate, D., la Foresta, F., Bramanti, A.,
Morabito, G., Palamara, I., 2012. Multivariate multi-
scale permutation entropy for complexity analysis of
Alzheimer’s disease EEG. Entropy, 14, pp. 1186-
1202.
Pievani, M., de Haan, W., Wu, T., Seeley, W. W., Frisoni,
G. B., 2011. Functional network disruption in the
degenerative dementias. Lancet Neurology, 10, pp.
829-843.
Reiman, E., Quiroz, Y., Fleisher, A., Chen, K., Velez-
Pardo, C., Jimenez-Del-Rio, M., Fagan, A. M., Shah,
A. R., Alvarez, S., Arbelaez, A., Giraldo, M., Acosta-
Baena, N., Sperling, R. A., Dickerson, B., Stern, C E.,
Tirado, V., Munoz, C., Reiman, R. A., Huentelman,
M. J., Alexander, G. E., Langbaum, J. B. S., Kosik, K.
S., Tariot, K. P., Lopera, F., 2012. Brain imaging and
fluid biomarker analysis in young adults at genetic risk
for autosomal dominant Alzheimer’s disease in the
presenilin E280A kindred: a case control study. Lancet
Neurology, 11, pp. 1048-1056.
Riedl, M., Müller, A., Wessel, N., 2013. Practical
considerations of permutation entropy. The European
Physical Journal Special Topics, 222, pp. 249-262.
Shannon, C. E., 1948. A mathematical theory of
communication. The Bell System Technical Journal,
27, pp. 379-423.
Simons, S., Abásolo, D., Escudero, J., 2012a. Quadratic
sample entropy and multiscale quadratic sample
entropy of the electroencephalogram in Alzheimer’s
disease. In Proceedings of the 5
th
International
Conference on Medical Signals and Information
Processing.
Simons, S., Abásolo, D., Escudero, J., 2012b. Fuzzy
entropy and multiscale fuzzy entropy of the
electroencephalogram in Alzheimer’s disease. In
Proceedings of the Young Researchers Futures
Meeting-Neural Engineering, Royal Academy of
Engineering.
Xiao-Feng, L., Yue, W., 2009. Fine-grained permutation
entropy as a measure of natural complexity for time
series. Chinese Physics B, 18(7), pp. 2690-2695.
Zanin, M., Zunino, L., Rosso, O. A., Papo, D., 2012.
Permutation entropy and its main biomedical and
econophysics applications: A review. Entropy, 14, pp.
1553-1577.
PermutationEntropyoftheElectroencephalogramBackgroundActivityinAlzheimer'sDisease-Investigationintothe
IncidenceofRepeatedValues
103