A Hierarchical BCI System Able to Discriminate between Non Intentional Control State and Four Intentional Control Activities

Julio Abascal, Andoni Arruti, José I. Martín, Javier Muguerza

2014

Abstract

This paper presents a two-level hierarchical approach to recognising intentional and non intentional mental tasks on a brain-computer interface. A clustering process is performed at the first recognition level in order to differentiate Non intentional Control state (NC) patterns from Intentional Control (IC) patterns. At the second level, the IC detected patterns are classified by means of supervised learning techniques, applied to the type of movement (left hand, right hand, tongue or foot imagery movement). The objective is to achieve high correct movement recognition scores, with a low percentage of wrong decisions (that is, low false positive rates), to avoid user frustration. Offline evaluation of the proposed prototype shows 84.5% accuracy, with a 6.7% false positive rate.

References

  1. Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan T., 2002. Brain-computer interfaces for communications and control. Clinical Neurophysiology, 113 (6): 767-791.
  2. Lotte, F., Confgedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B., 2007. A review of classification algorithms for eeg-based brain-computer interfaces. Journal of Neural Engineering, 4:R1-R13.
  3. Pfurtscheller, G., Neuper, C., 2001. Motor imagery and direct brain-computer communication. Proc. IEEE, vol. 89, pp.1123-1134.
  4. Nooh, A. A., Yunus, J., Daud, S.M., 2011. A review of Asynchronous Electroencephalogram-based Brain Computer Interface Systems. International Conference on Biomedical Engineering and Technology, Singapore, vol. 11.
  5. Blankertz, B., Müller, K. R., Krusienski, D., Schalk, G., Wolpaw, J. R., Schlögl, A., Pfurtscheller, G., Millan, J., Schröder, M., Birbaumer, N., 2006. The BCI2000 Competition III: Validating Alternative Approaches to Actual BCI Problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 153-159.
  6. Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G., 2005. Characterization of four-class motor imagery EEG data ffor the BCI competition 2005. Journal of Neural Engineering, 2: L14-L22.
  7. Lee, F., Sherer, R., Leeb, R., Neuper, C., Bischof, H., Pfurtscheller, G., 2005. A Comparative Analysis of Multi-class EEG Classification for Brain-computer interface. 10th Computer Vision Winter Workshop (CVWW). Technical University of Graz, Austria.
  8. AlZoubi, O., Koprinska, I., Calvo, R.A., 2008. Classification of Brain-computer Interface Data. 7th Australasian Data Mining Conference (AusDM), Adelaide (Australia), pp. 123-132.
  9. Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg H., 1999. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clinical Neurophysiology, vol. 110, no. 5, pp. 787-798.
  10. Hall, M., 2000. Correlation-based feature selection for discrete and numeric class machine learning. 17th International Conference on Machine Learning (ICML), 359-366, Morgan Kaufmann.
  11. Witten, L. H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco.
  12. Lotte, F., Mouchère, H., Lécuyer, A., 2008. Pattern Rejection Strategies for the Design of Self-Paced EEG-based Brain-Computer Interfaces. 19th International Conference on Pattern Recognition, Florida (USA), pp. 1-5.
  13. Scherer, R., Lee, F., Schlögl, A., Leeb, R., Bischof, H., Pfurtscheller, G., 2008. Towards self-paced braincomputer communication: Navigation through virtual worlds. IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, pp. 675-682.
  14. Satti, A., Coyle, D., Prasad, G., 2009. Continuous EEG Classification for a Self-paced BCI. 4th International IEEE EMBS Conference on Neural Engineering, Turkey, pp. 315-318.
Download


Paper Citation


in Harvard Style

Abascal J., Arruti A., I. Martín J. and Muguerza J. (2014). A Hierarchical BCI System Able to Discriminate between Non Intentional Control State and Four Intentional Control Activities . In Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS, ISBN 978-989-758-006-2, pages 91-97. DOI: 10.5220/0004723000910097


in Bibtex Style

@conference{phycs14,
author={Julio Abascal and Andoni Arruti and José I. Martín and Javier Muguerza},
title={A Hierarchical BCI System Able to Discriminate between Non Intentional Control State and Four Intentional Control Activities},
booktitle={Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS,},
year={2014},
pages={91-97},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004723000910097},
isbn={978-989-758-006-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS,
TI - A Hierarchical BCI System Able to Discriminate between Non Intentional Control State and Four Intentional Control Activities
SN - 978-989-758-006-2
AU - Abascal J.
AU - Arruti A.
AU - I. Martín J.
AU - Muguerza J.
PY - 2014
SP - 91
EP - 97
DO - 10.5220/0004723000910097