REFERENCES
Aguilera, C., Barrera, F., Lumbreras, F., Sappa, A., and
Toledo, R. (2012). Multispectral image feature points.
Sensors, 12(9):12661–12672.
Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). FREAK:
Fast retina keypoint. In IEEE Conference on Com-
puter Vision and Pattern Recognition, Providence, RI,
USA, June 16-21, pages 510–517.
Barrera, F., Lumbreras, F., and Sappa, A. (2012). Multi-
modal stereo vision system: 3d data extraction and al-
gorithm evaluation. IEEE Journal of Selected Topics
in Signal Processing, 6(5):437–446.
Barrera, F., Lumbreras, F., and Sappa, A. (2013). Mul-
tispectral piecewise planar stereo using manhattan-
world assumption. Pattern Recognition Letters,
34(1):52–61.
Bauer, J., Snderhauf, N., and Protzel, P. (2007). Compar-
ing several implementations of two recently published
feature detectors. In Proceedings of the International
Conference on Intelligent and Autonomous Systems,
Toulouse, France.
Bay, H., Tuytelaars, T., and Gool, L. J. V. (2006). SURF:
Speeded Up Robust Features. In Proceedings of the
9th European Conference on Computer Vision, Graz,
Austria, May 7-13, pages 404–417.
Calonder, M., Lepetit, V.,
¨
Ozuysal, M., Trzcinski, T.,
Strecha, C., and Fua, P. (2012). BRIEF: Computing
a local binary descriptor very fast. IEEE Trans. Pat-
tern Anal. Mach. Intell., 34(7):1281–1298.
Coyle, S., Ward, T., Markham, C., and McDarby, G. (2004).
On the suitability of near-infrared (NIR) systems for
next-generation braincomputer interfaces. Physiolog-
ical Measurement, 25(4).
Felic´ısimo, A. and Cuartero, A. (2006). Method-
ological proposal for multispectral stereo matching.
IEEE Trans. on Geoscience and Remote Sensing,
44(9):2534–2538.
Hansen, M. P. and Malchow, D. S. (2008). Overview of swir
detectors, cameras, and applications. In Proceedings
of the SPIE 6939, Thermosense, Orlando, FL, USA,
March 16.
Krotosky, S. and Trivedi, M. (2007). On color-, infrared-
, and multimodal-stereo approaches to pedestrian de-
tection. IEEE Transactions on Intelligent Transporta-
tion Systems, 8:619–629.
Leutenegger, S., Chli, M., and Siegwart, R. (2011). BRISK:
Binary Robust Invariant Scalable Keypoints. pages
2548–2555.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, Kerkyra,
Greece, September 20-27, pages 1150–1157.
Mikolajczyk, K. and Schmid, C. (2005). A performance
evaluation of local descriptors. IEEE Trans. Pattern
Anal. Mach. Intell., 27(10):1615–1630.
Miksik, O. and Mikolajczyk, K. (2012). Evaluation of lo-
cal detectors and descriptors for fast feature matching.
In Proceedings of the 21st International Conference
on Pattern Recognition, ICPR 2012, Tsukuba, Japan,
November 11-15, pages 2681–2684.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. R.
(2011). ORB: An efficient alternative to SIFT or
SURF. In IEEE International Conference on Com-
puter Vision, Barcelona, Spain, November 6-13, pages
2564–2571.
Schmid, C., Mohr, R., and Bauckhage, C. (2000). Evalua-
tion of interest point detectors. International Journal
of Computer Vision, 37(2):151–172.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
550