emg processing techniques using information theory.
Biomedical engineering online, 9(1):72.
Ghosh, P. K., Tsiartas, A., and Narayanan, S. (2011). Ro-
bust voice activity detection using long-term signal
variability. Audio, Speech, and Language Processing,
IEEE Transactions on.
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C.-K., and Stanley, H. E. (2000). Phys-
iobank, physiotoolkit, and physionet components of
a new research resource for complex physiologic sig-
nals. Circulation, 101(23):e215–e220.
Guralnik, V. and Srivastava, J. (1999). Event detection from
time series data. In Knowledge Discovery and Data
Mining, pages 33–42.
Hamedi, M., Salleh, S.-H., and Swee, T. T. (2011). Sur-
face electromyography-based facial expression recog-
nition in bi-polar configuration. Journal of Computer
Science, 7(9):1407–1415.
Huang, N. E., Shen, Z., and Long, S. R. (1999). A new
view of nonlinear water waves: The hilbert spectrum
1. Annual review of fluid mechanics, 31(1):417–457.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih,
H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu,
H. H. (1998). The empirical mode decomposition and
the hilbert spectrum for nonlinear and non-stationary
time series analysis. Proceedings of The Royal Society
A: Mathematical, Physical and Engineering Sciences,
454:903–995.
Jing-tian, T., Qing, Z., Yan, T., Bin, L., and Xiao-kai, Z.
(2007). Hilbert-huang transform for ecg de-noising.
In Bioinformatics and Biomedical Engineering, 2007.
ICBBE 2007. The 1st International Conference on,
pages 664–667.
Karagiannis, A. and Constantinou, P. (2009). Noise com-
ponents identification in biomedical signals based on
empirical mode decomposition. In IEEE EMBS Inter-
national Conference on Information Technology Ap-
plications in Biomedicine, pages 1–4.
Kim, J. (2007). Bimodal emotion recognition using speech
and physiological changes. Robust speech recognition
and understanding, pages 265–280.
Kohler, B.-U., Hennig, C., and Orglmeister, R. (2002). The
principles of software qrs detection. IEEE Engineer-
ing in Medicine and Biology Magazine, 21:42–57.
Kreibig, S. D. (2010). Autonomic nervous system activ-
ity in emotion: A review. Biological psychology,
84(3):394–421.
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., and Gross, J. J.
(2007). Cardiovascular, electrodermal, and respiratory
response patterns to fear-and sadness-inducing films.
Psychophysiology, 44(5):787–806.
Moody, G. B. and Mark, R. G. (2001). The impact of the
mit-bih arrhythmia database. Engineering in Medicine
and Biology Magazine, IEEE, 20(3):45–50.
¨
Ozg
¨
unen, K. T., C¸ elik, U., and Kurdak, S. S. (2010). De-
termination of an optimal threshold value for muscle
activity detection in emg analysis. Journal of Sports
Science and Medicine, 9:620–628.
Pantelopoulos, A. and Bourbakis, N. (2008). A survey on
wearable biosensor systems for health monitoring. In
Engineering in Medicine and Biology Society, 2008.
EMBS 2008. 30th Annual International Conference of
the IEEE, pages 4887–4890.
Picard, R. W. (2000). Affective computing. MIT press.
Sakhnov, K., Verteletskaya, E., and Simak, B. (2009). Ap-
proach for energy-based voice detector with adaptive
scaling factor. IAENG Internat. J. Comput. Sci, 36(4).
Terzano, M. G., Parrino, L., Sherieri, A., Chervin, R.,
Chokroverty, S., Guilleminault, C., Hirshkowitz, M.,
Mahowald, M., Moldofsky, H., Rosa, A., et al. (2001).
Atlas, rules, and recording techniques for the scor-
ing of cyclic alternating pattern (cap) in human sleep.
Sleep medicine, 2(6):537–553.
Tikkanen, P. E. (1999). Nonlinear wavelet and wavelet
packet denoising of electrocardiogram signal. Biolog-
ical Cybernetics, 80(4):259–267.
¨
Ust
¨
unda
˘
g, M., G
¨
okbulut, M., S¸eng
¨
ur, A., and Ata, F.
(2012). Denoising of weak ecg signals by using
wavelet analysis and fuzzy thresholding. Network
Modeling Analysis in Health Informatics and Bioin-
formatics, 1(4):135–140.
Van Boxtel, A. (2010). Facial emg as a tool for inferring af-
fective states. In Proceedings of Measuring Behavior
2010, pages 104–108.
Van Gerven, S. and Xie, F. (1997). A comparative study of
speech detection methods. In Eurospeech, volume 97.
Verbraeck, F. (2012). Objectifying human facial expres-
sions for clinical applications. Master’s thesis, Vrije
Universiteit Brussel, Belgium.
Wu, Z. and Huang, N. E. (2004). A study of the character-
istics of white noise using the empirical mode decom-
position method. Proceedings of The Royal Society
A: Mathematical, Physical and Engineering Sciences,
460:1597–1611.
PhysiologicalSignalProcessingforEmotionalFeatureExtraction
47