Doucet, A., De Freitas, N., and Gordon, N., editors (2001).
Sequential Monte Carlo methods in practice.
Doucet, A., Godsill, S., and Andrieu, C. (2000). On se-
quential monte carlo methods for bayesian filtering.
Statistics and Computing, 10:197–208.
Gao, X., You, D., and Katayama, S. (2012). Seam tracking
monitoring based on adaptive kalman filter embedded
elman neural network during high-power fiber laser
welding. Industrial Electronics, IEEE Transactions
on, 59(11):4315–4325.
Ge, W., Collins, R., and Ruback, R. (2012). Vision-based
analysis of small groups in pedestrian crowds. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 34(5):1003–1016.
Gordon, N., Salmond, D., and Smith, A. F. M. (1993).
Novel approach to nonlinear/non-gaussian bayesian
state estimation. Radar and Signal Processing, IEE
Proceedings F, 140(2):107–113.
Kitagawa, G. (1996). Monte carlo filter and smoother for
non-gaussian nonlinear state space models. Journal
of Computational and Graphical Statistics, 5:1–25.
Leibe, B., Schindler, K., Cornelis, N., and Van Gool, L.
(2008). Coupled object detection and tracking from
static cameras and moving vehicles. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
30(10):1683–1698.
Li, J. and Chua, C.-S. (2003). Transductive inference
for color-based particle filter tracking. 3:III–949–52
vol.2.
Limprasert, W., Wallace, A., and Michaelson, G. (2013).
Real-time people tracking in a camera network.
Emerging and Selected Topics in Circuits and Sys-
tems, IEEE Journal on, 3(2):263–271.
Maier-Hein, L., Mountney, P., Bartoli, A., Elhawary, H., El-
son, D., Groch, A., Kolb, A., Rodrigues, M., Sorger,
J., Speidel, S., and Stoyanov, D. (2013). Optical
techniques for 3d surface reconstruction in computer-
assisted laparoscopic surgery. Medical Image Analy-
sis, 17(8):974 – 996.
Mohan, K. and Wilscy, M. (2013). Object ranging and
tracking for aircraft landing system. In Signal Pro-
cessing Image Processing Pattern Recognition (IC-
SIPR), 2013 International Conference on, pages 278–
282.
Prez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002).
Color-based probabilistic tracking. pages 661–675.
Romo-Morales, L., Sanchez, A., Parra-Vega, V., Garcia, O.,
and Ruiz-Sanchez, F. (2013). Visual control for trajec-
tory tracking of quadrotors and real-time analysis on
an emulated environment. In American Control Con-
ference (ACC), 2013, pages 6315–6321.
Rui, T., Zhang, Q., Zhou, Y., and Xing, J. (2013). Ob-
ject tracking using particle filter in the wavelet
subspace. Neurocomputing, 119(0):125 – 130.
¡ce:title¿Intelligent Processing Techniques for
Semantic-based Image and Video Retrieval¡/ce:title¿.
Siradjuddin, I., Behera, L., McGinnity, T., and Coleman,
S. (2013). Image-based visual servoing of a 7-dof
robot manipulator using an adaptive distributed fuzzy
pd controller.
Straka, O. and
ˇ
Simandl, M. (2005). Using the Bhat-
tacharyya distance in functional sampling density of
particle filter, pages 1–6. IFAC, Prague.
Vidal, F. B. and Alcalde, V. H. C. (2005). Motion segmen-
tation in sequential images based on the differential
optical flow. 2nd International Conference on Infor-
matics in Control, Automation and Robotics -ICINCO,
pages 94–100.
Yin, F., Makris, D., and Velastin, S. (2007). Performance
evaluation of object tracking algorithms. Proceeding
Tenth IEEE International Workshop on Performance
Evaluation of Tracking and Surveillance.
Zhou, X., Li, Y., and He, B. (2014). Entropy distribution
and coverage rate-based birth intensity estimation in
gm-phd filter for multi-target visual tracking. Signal
Processing, 94(0):650 – 660.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
612