the AUC was 0.73.
These results show that the classifiers proposed
in this study presents similar results to the Stanford
HIV db and Rega algorithms that are used for many
clinicians to determine resistance to specific
antiretrovirals. This suggests that our models can be
used for the classification of new individuals in
relation to the development of resistance to
Nelfinavir and is a simple cost-effective tool that can
help clinicians in the management of each HIV+
individual.
REFERENCES
Barouch, D.H. 2008. Challenges in the development of an
HIV-1 vaccine. Nature 455, 7213, 613 – 619.
Beerenwinkel, N., Schmidt, B., Walter, H., Kaiser, R.,
Lengauer, T., Hoffmann, D., Korn, K. and Selbig, J.
2002. Diversity and complexity of HIV-1 drug
resistance: a bioinformatics approach to predicting
phenotype from genotype. Proc. Natl. Acad. Sci. U. S.
A. 99, 8271 – 8276.
Beerenwinkel, N. Däumer, M., Oette, M., Korn, K.,
Hoffmann, D., Kaiser, R., Lengauer, T., Selbig, J. and
Walter, H. 2003. Geno2pheno: Estimating phenotypic
drug resistance from HIV-1 genotypes. Nucleic Acids
Res. 31, 3850–3855.
Berrar, D. P., Downes, C. S. and Dubitzky, W. 2003.
Multiclass Cancer Classification Using Gene
Expression Profiling and Probabilistic Neural
Networks. In: Pacific Symposium on Biocomputing'03,
5 - 16.
Bonet, I., Garcia, M.M., Saeys, Y., Sanchez, R., Saeys, Y.,
Van de Peer, Y. and Grau, R. 2007. Predicting Human
Immunodeficiency Virus (HIV) Drug Resistance
Using Recurrent Neural Networks. In: Mira, J.,
Álvarez, J. R. (Eds.), IWINAC (1), vol. 4527, Lecture
Notes in Computer Science, 234 - 243. Springer.
Bushman, F., Landau, N.R. and Emini, E.A. 1998. New
developments in the biology and treatment of HIV.
Proc Natl Acad Sci USA 95, 19, 11041 – 11042.
Efron, B. 1979. Bootstrap methods: another look at the
jackknife. The annals of Statistics, 1-26.
Eisenberg, D., Schwarz, E., Komaromy, M., and Wall, R.
1984. Analysis of membrane and surface protein
sequences with the hydrophobic moment plot. Journal
of Molecular Biology 179, 1, 125-142.
He H. and Garcia, E.A. 2009. Learning from Imbalanced
Data. IEEE Transactions on Knowledge and Data
Engineering 21, 9, 1263-1284.
Johnson, V.A., Calvez, V., Günthard, H.F., Paredes
R., Pillay, D., Shafer, R., Wensing, A.M. and Richman
D.D. 2011. 2011 update of the drug resistance
mutations in HIV-1. Top Antivir Med 19, 4, 156 - 164.
Liu, T.F. and Shafer, R.W. 2006. Web Resources for HIV
type 1 Genotypic-Resistance Test Interpretation. Clin
Infect Dis 42, 11, 1608-1618.
Parzen, E. 1962. On estimation of a probability density-
function and mode. Ann Math Statist 33, 3, 1065 –
1076.
Pasomsub, E., Sukasem, C., Sungkanuparph, S., Kijsirikul
and B., Chantratita, W. 2010. The application of
artificial neural networks for phenotypic drug
resistance prediction: evaluation and comparison with
other interpretation systems. Jpn J Infect Dis. 63, 2, 87
- 94.
Peeters, M. 2011. The genetic variability of HIV-1 and its
implications. Transfus Clin Biol. 8, 3, 222 – 225.
Prosperi, M.C.F., Altmann, A., Rosen-Zvi, M. Aharoni,
E., Borgulya, G., Bazso, F,Sönnerborg, A., Schülter,
E., Struck, D., Ulivi, G., Vandamme, A., Vercauteren,
J. and Zazziet, M. 2009. Investigation of expert rule
bases, logistic regression, and non-linear machine
learning techniques for predicting response to
antiretroviral treatment. Antivir Ther. 14, 433-442.
Raposo, L., Arruda, M., Brindeiro, R. and Nobre, F. 2013.
Logistic Regression Models for Predicting Resistance
to HIV Protease Inhibitor Nelfinavir
XIII Mediterranean Conference on Medical and
Biological Engineering and Computing 2013, Springer
International Publishing, 41, 1237 - 1240.
Richman, D.D. 2006. Antiviral drug resistance. Antiviral
Res. 71, 117–121.
Specht, D. F. 1990. Probabilistic neural networks, Neural
Netw. 3, 1, 109 - 118.
UNAIDS 2011. How to get to zero: Faster. Smarter.
Better.
Van der Borght, K., Verheyen, A., Feyaerts, M., Van
Wesenbeeck, L., Verlinden, Y., Van Craenenbroeck,
E. and Van Vlijmen, H. 2013. Quantitative prediction
of integrase inhibitor resistance from genotype through
consensus linear regression modeling. Virology
Journal 10, 8, 1 – 12.
Van Laethem, K., Geretti, A.M., Camacho, R. and
Vandamme A.M. 2009. Algorithm for the use of
genotypic HIV-1 resistance data (version Rega
v8.0.2), from: http://rega.kuleuven.be/cev/avd/
software/rega-algorithm.
Vermeiren, H., Van Craenenbroeck, E., Alen, P.,
Bacheler, L., G. Picchio, G. and Lecocq, P. 2007.
Prediction of HIV-1 drug susceptibility phenotype
from the viral genotype using linear regression
modeling. J Virol Methods 145, 1, 47 – 55.
Wang, D. and Larder, B. 2003. Enhanced prediction of
lopinavir resistance from genotype by use of artificial
neural networks. J Infect Dis. 188, 5, 653 - 660.
Zweig, M.H. and Campbell, G. 1993. Receiver-operating
characteristic (ROC) plots: a fundamental evaluation
tool in clinical medicine. Clin Chem 39, 4, 561 - 577.
ProbabilisticNeuralNetworkforPredictingResistancetoHIV-ProteaseInhibitorNelfinavir
23