roc curve in the evaluation of machine learning algo-
rithms. Pattern recognition, 30(7):1145–1159.
Chum, O., Philbin, J., Sivic, J., Isard, M., and Zisserman,
A. (2007). Total recall: Automatic query expansion
with a generative feature model for object retrieval. In
Computer Vision, 2007. ICCV 2007. IEEE 11th Inter-
national Conference on, pages 1–8. IEEE.
Elkan, C. (2003). Using the triangle inequality to accelerate
k-means. In ICML, volume 3, pages 147–153.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2010). Object detection with discrim-
inatively trained part-based models. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
32(9):1627–1645.
Johns, E. and Yang, G.-Z. (2011a). From images to
scenes: Compressing an image cluster into a single
scene model for place recognition. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on,
pages 874–881. IEEE.
Johns, E. and Yang, G.-Z. (2011b). Place recognition
and online learning in dynamic scenes with spatio-
temporal landmarks. In BMVC, pages 1–12.
Lepetit, V., Lagger, P., and Fua, P. (2005). Randomized
trees for real-time keypoint recognition. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 2,
pages 775–781. IEEE.
Li, F. and Kosecka, J. (2006). Probabilistic location
recognition using reduced feature set. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, pages 3405–3410.
IEEE.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee.
Mikolajczyk, K., Leibe, B., and Schiele, B. (2006). Multi-
ple object class detection with a generative model. In
Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 1, pages
26–36. IEEE.
Mikolajczyk, K. and Schmid, C. (2005). A perfor-
mance evaluation of local descriptors. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
27(10):1615–1630.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool,
L. (2005). A comparison of affine region detectors.
International journal of computer vision, 65(1-2):43–
72.
Moosmann, F., Triggs, W., and Jurie, F. (2006). Random-
ized clustering forests for building fast and discrimi-
native visual vocabularies.
Narzt, W., Pomberger, G., Ferscha, A., Kolb, D., M
¨
uller, R.,
Wieghardt, J., H
¨
ortner, H., and Lindinger, C. (2006).
Augmented reality navigation systems. Universal Ac-
cess in the Information Society, 4(3):177–187.
Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A.
(2007a). Object retrieval with large vocabularies and
fast spatial matching. In Computer Vision and Pat-
tern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE.
Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A.
(2007b). Object retrieval with large vocabularies and
fast spatial matching. In Computer Vision and Pat-
tern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE.
Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman,
A. (2008). Lost in quantization: Improving partic-
ular object retrieval in large scale image databases.
In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8. IEEE.
Sivic, J. and Zisserman, A. (2003). Video google: A text
retrieval approach to object matching in videos. In
Computer Vision, 2003. Proceedings. Ninth IEEE In-
ternational Conference on, pages 1470–1477. IEEE.
DynamicSceneRecognitionbasedonImprovedVisualVocabularyModel
565