Finally, we would like to state that multi-objective
optical flow parameter optimization and characteri-
zation are needed for further development of optical
flow applications. It is perfectly reasonable to think
about Pareto-based optical flow rankings, assuming
some rules for fair result comparison. One solution
could be to allow researchers to run their experiments
on a common hardware platform. Current web-based
rankings can easily provide a graphical representation
of several objectives.
REFERENCES
B
¨
ack, T. (1996). Evolutionary algorithms in theory and
practice: evolution strategies, evolutionary program-
ming, genetic algorithms. Oxford University Press.
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.,
and Szeliski, R. (2011). A database and evaluation
methodology for optical flow. International Journal
of Computer Vision, 92:1–31.
Barron, J., Fleet, D., and Beauchemin, S. (1994). Perfor-
mance of optical flow techniques. International Jour-
nal of Computer Vision, 12(1):43–77.
Benlian, X. and Zhiquan, W. (2007). A multi-objective-
ACO-based data association method for bearings-only
multi-target tracking. Communications in Nonlinear
Science and Numerical Simulation, 12(8):1360–1369.
Briggs, W., Henson, V., and McCormick, S. (2000). A
Multigrid Tutorial. Society for Industrial and Applied
Mathematics.
Bruhn, A. (2006). Variational Optic Flow Computation, Ac-
curate Modelling and Efficient Numerics. Ph.D. dis-
sertation, Saarland University.
Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., and
Schn
¨
orr, C. (2005a). Variational optical flow compu-
tation in real time. IEEE Transactions on Image Pro-
cessing, 14(5):608–615.
Bruhn, A., Weickert, J., and Schn
¨
orr, C. (2005b). Lu-
cas/Kanade meets Horn/Schunck: Combining local
and global optic flow methods. International Journal
of Computer Vision, 61(3):1–21.
Changming and Sun (2002). Fast optical flow using 3D
shortest path techniques. Image and Vision Comput-
ing, 20(13-14):981–991.
Chittka, L., Dyer, A. G., Bock, F., and Dornhaus, A. (2003).
Psychophysics: Bees trade off foraging speed for ac-
curacy. Nature, 424(6947):388.
Deb, K. and Kumar, A. (1995). Real-coded genetic algo-
rithms with simulated binary crossover: Studies on
multimodel and multiobjective problems. Complex
Systems, 9(6):431–454.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197.
Everingham, M., Muller, H., and Thomas, B. (2006). Evalu-
ating image segmentation algorithms using the pareto
front. In Heyden, A., Sparr, G., Nielsen, M., and Jo-
hansen, P., editors, Computer Vision - ECCV 2002,
volume 2353 of Lecture Notes in Computer Science,
pages 255–259. Springer Berlin / Heidelberg.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley.
Heas, P., Herzet, C., and Memin, E. (2012). Bayesian
inference of models and hyperparameters for robust
optical-flow estimation. Image Processing, IEEE
Transactions on, 21(4):1437–1451.
Horn, B. K. and Schunck, B. G. (1981). Determining optical
flow. Artificial Intelligence, 17:185–203.
Krajsek, K. and Mester, R. (2006). A maximum likelihood
estimator for choosing the regularization parameters
in global optical flow methods. In Image Processing,
2006 IEEE International Conference on, pages 1081–
1084.
Li, Y. and Huttenlocher, D. (2008). Learning for optical
flow using stochastic optimization. In Forsyth, D.,
Torr, P., and Zisserman, A., editors, European Con-
ference on Computer Vision - ECCV 2008, volume
5303 of Lecture Notes in Computer Science, pages
379–391. Springer Berlin / Heidelberg.
Salmen, J., Caup, L., and Igel, C. (2011). Real-time estima-
tion of optical flow based on optimized Haar wavelet
features. In Evolutionary MultiCriterion Optimiza-
tion, pages 448–461. Springer.
Verschae, R., Ruiz-del-Solar, J., K
¨
oppen, M., and Garcia,
R. V. (2005). Improvement of a face detection sys-
tem by evolutionary multi-objective optimization. In
Proceedings of the Fifth International Conference on
Hybrid Intelligent Systems, pages 361–366, Washing-
ton, DC, USA. IEEE Computer Society.
Vite-Silva, I., Cruz-Cort
´
es, N., Toscano-Pulido, G., and
Fraga, L. G. (2007). Optimal triangulation in 3D com-
puter vision using a multi-objective evolutionary al-
gorithm. In Proceedings of the EvoWorkshops 2007:
Applications of Evolutionary Computing, pages 330–
339, Berlin, Heidelberg. Springer-Verlag.
Multi-objectiveOptimizationforCharacterizationofOpticalFlowMethods
573