be addressed to increase the size of the community in
order to release a commercial version of the platform.
ACKNOWLEDGEMENTS
This work has been partially supported by the Span-
ish Government under Research Projects TIN2011-
25606, TIN2011-29494-C03-02 and PROMETEO
Project of the ”Secretar´ıa Nacional de Educaci´on
Superior, Ciencia, Tecnolog´ıa e Innovaci´on de la
Rep´ublica del Ecuador”.
REFERENCES
Amato, A., Sappa, A. D., Forn´es, A., Lumbreras, F., and
Llad´os, J. (2013). Divide and conquer: atomizing
and parallelizing a task in a mobile crowdsourcing
platform. In Proceedings of the 2Nd ACM Interna-
tional Workshop on Crowdsourcing for Multimedia,
CrowdMM ’13, pages 21–22.
Demirbas, M., Bayir, M. A., Akcora, C. G., and Yilmaz,
Y. S. (2010). Crowd-sourced sensing and collabora-
tion using twitter. In IEEE International Symposium
on a World of Wireless Mobile and Multimedia Net-
works (WoWMoM), pages 1–9.
Eagle, N. (2009). txteagle: Mobile crowdsourcing. In In In-
ternationalization, Design and Global Development,
Volume 5623 of Lecture Notes in Computer Science.
Springer.
Liu, Y., Lehdonvirta, V., Alexandrova, T., and Nakajima, T.
(2012). Drawing on mobile crowds via social media.
Multimedia Systems, 18(1):53–67.
Liu, Y., Lehdonvirtay, V., Kleppez, M., Alexandrova, T.,
Kimura, H., and Nakajima, T. (2010). A crowdsourc-
ing based mobile image translation and knowledge
sharing service. In Proceedings of the 9th Interna-
tional Conference on Mobile and Ubiquitous Multi-
media.
Mason, W. A. and Watts, D. J. (2009). Financial incentives
and the ”performance of crowds”. SIGKDD Explo-
rations, 11(2):100–108.
McDuff, D., el Kaliouby, R., and Picard, R. (2011). Crowd-
sourced data collection of facial responses. In Pro-
ceedings of the 13th international conference on mul-
timodal interfaces, ICMI ’11, pages 11–18.
Moehrmann, J. and Heidemann, G. (2012). Efficient anno-
tation of image data sets for computer vision applica-
tions. In Proceedings of the 1st International Work-
shop on Visual Interfaces for Ground Truth Collection
in Computer Vision Applications, VIGTA ’12, pages
2:1–2:6, New York, NY, USA. ACM.
Noronha, J., Hysen, E., Zhang, H., and Gajos, K. Z. (2011).
Platemate: crowdsourcing nutritional analysis from
food photographs. In Proceedings of the 24th annual
ACM symposium on User interface software and tech-
nology, UIST ’11, pages 1–12.
Romero, V., Forn´es, A., Serrano, N., S´anchez, J. A., Tosel-
lia, A. H., Frinken, V., Vidal, E., and Llad´os, J. (2013).
The esposalles database: An ancient marriage license
corpus for off-line handwriting recognition. Pattern
Recognition, 46(6):1658–1669.
Snoek, C. G. M., Freiburg, B., Oomen, J., and Ordelman,
R. (2010). Crowdsourcing rock n’ roll multimedia re-
trieval. In Proceedings of the 18th International Con-
ference on Multimedia, Firenze, Italy, October 25-29,
pages 1535–1538.
Vondrick, C., Patterson, D., and Ramanan, D. (2013). Effi-
ciently scaling up crowdsourced video annotation - a
set of best practices for high quality, economical video
labeling. International Journal of Computer Vision,
101(1):184–204.
Vondrick, C., Ramanan, D., and Patterson, D. (2010).
Efficiently scaling up video annotation with crowd-
sourced marketplaces. In 11th European Confer-
ence on Computer Vision, Heraklion, Crete, Greece,
September 5-11, pages 610–623.
AGeneral-purposeCrowdsourcingPlatformforMobileDevices
215