Murase, H. and Nayar, S. (1995). Visual learning and recog-
nition of 3-d objects from appearance. Computer Vi-
sion, 14(1):5–24.
Nevatia, K. and Binford, T. (1973). Structured descriptions
of complex objects. In IJCAI, pages 641–647.
Nishimoto, S., Vu, A., Naselaris, T., Benjamini, Y., Yu, B.,
and Gallant, J. (2011). Reconstructing visual experi-
ences from brain activity evoked by natural movies.
Current Biology, 21(19):1641–1646.
Ojala, T., Pietikainen, M., and Harwood, D. (1994). Perfor-
mance evaluation of texture measures with classifica-
tion based on kullback discrimination of distributions.
In ICPR, volume 1, pages 582–585.
Parikh, D. and Zitnick, C. (2010). The role of features,
algorithms and data in visual recognition. In CVPR,
pages 2328 –2335.
Perrett, D. and Oram, M. (1993). Neurophysiology of shape
processing. IVC, 11:317–333.
Perronnin, F. and Dance, C. (2007). Fisher kernels on vi-
sual vocabularies for image categorization. In CVPR,
pages 1–8.
Perronnin, F., Snchez, J., and Mensink, T. (2010). Improv-
ing the fisher kernel for large-scale image classifica-
tion. In ECCV.
Pinto, N., Cox, D., and DiCarlo, J. (2008). Why is real-
world visual object recognition hard? PLoS Compu-
tational Biology, 41(1).
Ponce, J., Berg, T., Everingham, M., Forsyth, D., Hebert,
M., Lazebnik, S., Marszalek, M., Schmid, C., Russell,
B., Torralba, A., Williams, C., Zhang, J., and Zisser-
man, A. (2006). Dataset issues in object recognition.
volume 4170, pages 29–48. Springer Verlag.
Ramanan, A. and Niranjan, M. (2010). A One-pass
Resource-Allocating Codebook for patch-based visual
object recognition. In MLSP.
Reichert, D., Series, P., and Storkey, A. (2011a). Halluci-
nations in charles bonnet syndrome induced by home-
ostasis: a deep boltzmann machine model. In NIPS,
volume 23, pages 2020–2028.
Reichert, D., Series, P., and Storkey, A. (2011b). A hierar-
chical generative model of recurrent object-based at-
tention in the visual cortex. In Artificial neural net-
works (ANN), ICANN, pages 18–25.
Riesenhuber, M. and Poggio, T. (1999). Hierarchical mod-
els of object recognition in cortex. Nature Neuro-
science, 2:1019–1025.
Rolls, E., Loh, M., Deco, G., and Winterer, G. (2008-
2009). Computational models of schizophrenia and
dopamine modulation in the prefrontal cortex. Nature
Rev. Neurosci., 9(9):696–709.
Rumelhart, D., Hinton, G., and Williams, R. (1986). Learn-
ing representations by back-propagating errors. Na-
ture, 323(6088):533–536.
Sanchez, J. and Perronnin, F. (2011). High-dimensional
signature compression for large-scale image classifi-
cation. In CVPR, pages 1665 –1672.
Sanchez, J., Perronnin, F., Mensink, T., and Verbeek, J.
(2013). Image Classification with the FV: Theory &
Practice. Technical Report RR-8209, INRIA.
Sejnowsky, T. (1976). On global properties of neuronal in-
teraction. Biol. Cybern, 22:85–95.
Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich,
U., and Poggio, T. (2007a). A quantitative theory of
immediate visual recognition. Progress in Brain Re-
search, 165:33–56.
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and
Poggio, T. (2007b). Robust object recognition with
cortex-like mechanisms. PAMI, 29:411–426.
Sugase, Y., Yamane, S., Ueno, S., and Kawano, K. (1999).
Global and fine information coded by single neurons
in the temporal visual cortex. Nature, pages 869–873.
Tarr, M. and Blthoff, H. (1998). Image-based object recog-
nition in man, monkey and machine. Cognition, 67(1-
2):1–20.
Taylor, G. and Hinton, G. (2009). Factored conditional
Restricted Boltzmann Machine for modeling motion
style. In ICML.
Thirion, B., Duchesnay, E., Hubbard, E., Dubois, J., Po-
line, J., Lebihan, D., and Dehaene, S. (2006). Inverse
retinotopy: inferring the visual content of images from
brain activation patterns. Neuroimg., 33(4):1104–
1116.
Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of pro-
cessing in the human visual system. Nature, 381:520–
522.
Thulasiraman, K. and Swamy, M. (1992). Graphs: Theory
and Algorithms. John Wiley & Sons, Inc., NY.
Turk, M. and Pentland, A. (1991). Eigenfaces for recogni-
tion. Cognitive Neuroscience, 3(1):71–86.
Viola, P. and Jones, M. (2001). Rapid object detection us-
ing a boosted cascade of simple features. In CVPR,
volume 1, pages I–511 – I–518.
Wallis, G. and Rolls, E. (1996). A model of invariant object
recognition in the visual system. Prog. Neurobiol.,
51:167–194.
Wertheimer, M. (1938). Laws of organization in perceptual
forms. W. Ellis, W (Ed. & Trans.), London: Routledge
& Kegan Paul(Original work published in 1923).
Wilson, H. and Cowan, J. (1972). Excitatory and inhibitory
interactions in localized populations of model neu-
rons. Biophysical Journal, 12(1):1–24.
Wu, J. and Rehg, J. (2011). Centrist: A visual descriptor for
scene categorization. PAMI, 33(8):1489–1501.
Zhang, J., Lazebnik, S., and Schmid, C. (2007). Local fea-
tures and kernels for classification of texture and ob-
ject categories: a comprehensive study. Computer Vi-
sion, 73:213–238.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
186