ACKNOWLEDGEMENTS
The authors are grateful to FAPESP grants #2009/
16206-1, #2010/12697-8 and #2011/08348-0, and
CNPq grants #470571/2013-6 and #303182/2011-3.
REFERENCES
All
`
ene, C., Audibert, J. Y., Couprie, M., Cousty, J., and
Keriven, R. (2007). Some links between min-cuts,
optimal spanning forests and watersheds. In Proceed-
ings of the International Symposium on Mathematical
Morphology, pages 253–264. MCT/INPE.
Catanzaro, B., Sundaram, N., and Keutzer, K. (2008). Fast
support vector machine training and classification on
graphics processors. In Proceedings of the 25th inter-
national conference on Machine learning, pages 104–
111, New York, NY, USA. ACM.
Do, T.-N., Nguyen, V.-H., and Poulet, F. (2008). Speed
up svm algorithm for massive classification tasks. In
Proceedings of the 4th international conference on
Advanced Data Mining and Applications, pages 147–
157, Berlin, Heidelberg. Springer-Verlag.
Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern
Classification (2nd Edition). Wiley-Interscience.
Falc
˜
ao, A., Stolfi, J., and Lotufo, R. (2004). The image
foresting transform theory, algorithms, and applica-
tions. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 26(1):19–29.
Frank, A. and Asuncion, A. (2013). UCI machine learning
repository.
Fujimoto, N. (2008). Faster matrix-vector multiplication on
geforce 8800gtx. In Proceedings of the IEEE Inter-
national Symposium on Parallel and Distributed Pro-
cessing, pages 1–8.
Hoberock, J. and Bell, N. (2010). Thrust: A
Parallel Template Library. Available at
http://www.meganewtons.com/, Version 1.3.0.
Iwashita, A. S., Papa, J. P., Falc
˜
ao, A. X., Lotufo, R.,
Oliveira, V. M., Albuquerque, V. H. C., and Tavares,
J. M. R. S. (2012). Speeding up optimum-path forest
training by path-cost propagation. In Proceedings of
the XXI International Conference on Pattern Recogni-
tion, pages 1233–1236.
Jang, H., Park, A., and Jung, K. (2008). Neural network im-
plementation using cuda and openmp. In DICTA ’08:
Proceedings of the 2008 Digital Image Computing:
Techniques and Applications, pages 155–161, Wash-
ington, DC, USA. IEEE Computer Society.
Kaewpijit, S., Moigne, J., and El-Ghazawi, T. (2003).
Automatic reduction of hyperspectral imagery using
wavelet spectral analysis. IEEE Transactions on Geo-
science and Remote Sensing, 41(4):863–871.
King, R. D., Feng, C., and Sutherland, A. (1995). Stat-
log: Comparison of classification algorithms on large
real-world problems. Applied Artificial Intelligence,
9(3):289–333.
Landgrebe, D. (2005). Signal Theory Methods in Multi-
spectral Remote Sensing. Wiley, Newark, NJ.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1988).
Gradient-based learning applied to document recogni-
tion. Available at http://yann.lecun.com/exdb/mnist/.
Papa, J. P., Falc
˜
ao, A. X., Albuquerque, V. H. C., and
Tavares, J. M. R. S. (2012). Efficient supervised
optimum-path forest classification for large datasets.
Pattern Recognition, 45(1):512–520.
Papa, J. P., Falc
˜
ao, A. X., and Suzuki, C. T. N. (2009a).
Supervised pattern classification based on optimum-
path forest. International Journal of Imaging Systems
and Technology, 19(2):120–131.
Papa, J. P., S., C. T. N., and Falc
˜
ao, A. X. (2009b).
LibOPF: A library for the design of optimum-path
forest classifiers. Software version 2.0 available at
http://www.ic.unicamp.br/ afalcao/LibOPF.
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
588