Geometric feature based facial expression recognition
using multiclass support vector machines. In Gran-
ular Computing, 2009, GRC ’09. IEEE International
Conference on, pages 318 –321.
Hammal, Z., Couvreur, L., Caplier, A., and Rombaut,
M. (2007). Facial expression classification: An
approach based on the fusion of facial deforma-
tions using the transferable belief model. Interna-
tional Journal of Approximate Reasoning, 46(3):542
– 567. <ce:title>Special Section: Aggregation Opera-
tors</ce:title>.
Hong, J., Han, M., Song, K., and Chang, F. (2007). A fast
learning algorithm for robotic emotion recognition. In
Computational Intelligence in Robotics and Automa-
tion, 2007. CIRA 2007. International Symposium on,
pages 25–30. Ieee.
Jamshidnezhad, A. and Nordin, M. (2012). Challenging of
facial expressions classification systems: Survey, crit-
ical considerations and direction of future work. Re-
search Journal of Applied Sciences, 4.
Kapoor, A., Qi, Y., and Picard, R. W. (2003). Fully auto-
matic upper facial action recognition. In Proceedings
of the IEEE International Workshop on Analysis and
Modeling of Faces and Gestures, AMFG ’03, pages
195–, Washington, DC, USA. IEEE Computer Soci-
ety.
Ko, K. and Sim, K. (2010). Development of a facial emo-
tion recognition method based on combining aam with
dbn. In Cyberworlds (CW), 2010 International Con-
ference on, pages 87–91. IEEE.
Kotsia, I., Buciu, I., and Pitas, I. (2008). An analysis of fa-
cial expression recognition under partial facial image
occlusion. Image and Vision Computing, 26(7):1052
– 1067.
Kotsia, I. and Pitas, I. (2007). Facial expression recognition
in image sequences using geometric deformation fea-
tures and support vector machines. Image Processing,
IEEE Transactions on, 16(1):172 –187.
Langner, O., Dotsch, R., Bijlstra, G., and Wigboldus, D.
Support material for the article : Presentation and Val-
idation of the Radboud Faces Database ( RaFD ) Mean
Validation Data : Caucasian Adult Subset. Image
(Rochester, N.Y.).
Luximon, Y., Ball, R., and Justice, L. (2011). The 3d chi-
nese head and face modeling. Computer-Aided De-
sign.
Michel, P. and El Kaliouby, R. (2003). Real time facial ex-
pression recognition in video using support vector ma-
chines. In Proceedings of the 5th international confer-
ence on Multimodal interfaces, pages 258–264. ACM.
Niese, R., Al-Hamadi, A., Farag, A., Neumann, H., and
Michaelis, B. (2012). Facial expression recognition
based on geometric and optical flow features in colour
image sequences. Computer Vision, IET, 6(2):79 –89.
Pardàs, M. and Bonafonte, A. (2002). Facial animation
parameters extraction and expression recognition us-
ing hidden markov models. Signal Processing: Image
Communication, 17(9):675–688.
Rodriguez, J., Perez, A., and Lozano, J. (2010). Sensitiv-
ity analysis of k-fold cross validation in prediction er-
ror estimation. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 32(3):569–575.
Saragih, J., Lucey, S., and Cohn, J. (2011a). Deformable
model fitting by regularized landmark mean-shift. In-
ternational Journal of Computer Vision, pages 1–16.
Saragih, J., Lucey, S., and Cohn, J. (2011b). Real-time
avatar animation from a single image. In Auto-
matic Face & Gesture Recognition and Workshops
(FG 2011), 2011 IEEE International Conference on,
pages 117–124. IEEE.
Seyedarabi, H., Aghagolzadeh, A., and Khanmohammadi,
S. (2004). Recognition of six basic facial expressions
by feature-points tracking using rbf neural network
and fuzzy inference system. In Multimedia and Expo,
2004. ICME ’04. 2004 IEEE International Conference
on, volume 2, pages 1219 –1222 Vol.2.
Shan, C., Gong, S., and McOwan, P. (2009). Facial ex-
pression recognition based on local binary patterns: A
comprehensive study. Image and Vision Computing,
27(6):803–816.
Vetter, T. A Morphable Model For The Synthesis Of 3D
Faces f g. Faces.
Wang, J. and Yin, L. (2007). Static topographic modeling
for facial expression recognition and analysis. Com-
puter Vision and Image Understanding, 108(1-2):19–
34.
Youssif, A. A. A. and Asker, W. A. A. (2011). Automatic fa-
cial expression recognition system based on geometric
and appearance features. Computer and Information
Science, pages 115–124.
Zeng, Z., Pantic, M., Roisman, G., and Huang, T. (2009).
A survey of affect recognition methods: Audio, vi-
sual, and spontaneous expressions. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
31(1):39–58.
Zhang, L., Tjondronegoro, D., and Chandran, V. (2012).
Discovering the best feature extraction and selection
algorithms for spontaneous facial expression recogni-
tion. 2012 IEEE International Conference on Multi-
media and Expo.
Real-timeEmotionRecognition-NovelMethodforGeometricalFacialFeaturesExtraction
385