REFERENCES
Battiato, S., Gallo, G., and Nicotra, S. (2003). Perceptive
visual texture classification and retrieval. In Image
Analysis and Processing, 2003.Proceedings. 12th In-
ternational Conference on, pages 524–529.
Brodatz, P. (1966). Textures, a photographic album for
artists and designers. New York:Dover.
Broek, E. and Rikxoort, E. (2005). Parallel-sequential tex-
ture analysis. In Pattern Recognition and Image Anal-
ysis, volume 3687 of Lecture Notes in Computer Sci-
ence, pages 532–541. Springer Berlin Heidelberg.
Chang, C.-Y. and Fu, S.-Y. (2006). Image classification us-
ing a module rbf neural network. In Innovative Com-
puting, Information and Control, 2006. ICICIC ’06.
First International Conference on, volume 2, pages
270–273.
Deselaers, T., Keysers, D., and Ney, H. (2004). Features
for image retrieval - a quantitative comparison. In In
DAGM 2004, Pattern Recognition, 26th DAGM Sym-
posium, pages 228–236.
Haralick, R. (1979). Statistical and structural approaches to
texture. Proceedings of the IEEE.
Hayes K.C., Shah A.N., R. A. (1974). Texture coarseness:
Further experiments. Systems, Man and Cybernetics,
IEEE Transactions on, SMC-4(5):467–472.
Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P.,
J., Moore, R., Chang, K., and Munishkumaran, S.
(1998). Current status of the digital database for
screening mammography. In Karssemeijer, N., Thi-
jssen, M., Hendriks, J., and Erning, L., editors, Digital
Mammography, volume 13 of Computational Imaging
and Vision, pages 457–460. Springer Netherlands.
Howarth, P. and Rger, S. (2004). S.: Evaluation of tex-
ture features for content-based image retrieval. In In:
Proceedings of the International Conference on Image
and Video Retrieval, Springer-Verlag.
Jian, M., Liu, L., and Guo, F. (2009). Texture image clas-
sification using perceptual texture features and gabor
wavelet features. In Information Processing, 2009.
APCIP 2009. Asia-Pacific Conference on, volume 2,
pages 55–58.
Julesz, B. (1981). Textons, the elements of texture percep-
tion, and their interactions. Nature, 290(5802):91–97.
Landy, M. S. and Graham, N. (2004). Visual perception of
texture. In THE VISUAL NEUROSCIENCES, pages
1106–1118. MIT Press.
Prasad, B. G. and Krishna, A. N. (2011). Statistical texture
feature-based retrieval and performance evaluation of
ct brain images. In Electronics Computer Technology
(ICECT), 2011 3rd International Conference on, vol-
ume 2, pages 289–293.
Rosenfeld, A. (1975). Visual texture analysis: An overview.
Technical report, DTIC Document.
Tamura, H., Mori, S., and Yamawaki, T. (1978). Textu-
ral features corresponding to visual perception. Sys-
tems, Man and Cybernetics, IEEE Transactions on,
8(6):460–473.
Umarani, C. and Radhakrishnan, S. (2007). Combined sta-
tistical and structural approach for unsupervised tex-
ture classification. ICGST International Journal on
Graphics, Vision and Image Processing, 07:31–36.
van den Broek, E. L. and Rikxoort, E. M. (2004). Evalu-
ation of color representation for texture analisys. In
Verbrugge, R., Taatgen, N., and Schomaker, L., ed-
itors, Prooceedings of the 16th Belgian Dutch Artifi-
cial Intelligence Conference (BNAIC 2004), Gronin-
gen, The Netherlands, pages 35–42.
van den Broek, E. L., Rikxoort, E. M., Kok, T., and Schuten,
T. E. (2006). M-hints: Mimicking humans in texture
sorting. In Human Vision and Electronic Imaging XI,
volume 6057, pages 332–343. SPIE, the International
Society for Optical Engineering.
van Rikxoort, E. M., van den Broek, E. L., and Schouten,
T. E. (2005). Mimicking human texture classification.
In Proceedings of Human Vision and Electronic Imag-
ing X, pages 215–226.
StatisticalFeaturesforImageRetrieval-AQuantitativeComparison
617