Figure 12: Results of our algorithm applied to the recordings of the museum visit. Each timeline represents a short summary
of viewing behaviour of a participant.
techniques and presented results of large-scale real-
life experiments. Our future work concentrates on
intelligent sampling which should avoid the process-
ing of every eye-tracker tick and thus reduce process-
ing time. We will also pay attention to a more user-
friendly visualisation of the results.
REFERENCES
Alves, R., Lim, V., Niforatos, E., Chen, M., Karapanos, E.,
and Nunes, N. J. (2012). Augmenting customer jour-
ney maps with quantitative empirical data: a case on
eeg and eye tracking.
Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In ECCV, pages 404–417.
Brˆone, G., Oben, B., and Feyaerts, K. (2010). Insight inter-
action. a multimodal and multifocal dialogue corpus.
Brˆone, G., Oben, B., and Goedem´e, T. (2011). Towards
a more effective method for analyzing mobile eye-
tracking data: integrating gaze data with object recog-
nition algorithms. In Proc. of PETMEI, pages 53–56.
Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010).
Brief: binary robust independent elementary features.
In ECCV, pages 778–792.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In CVPR, pages 886–
893.
De Beugher, S., Brˆone, G., and Goedem´e, T. (2012). Au-
tomatic analysis of eye-tracking data using object de-
tection algorithms. PETMEI.
Doll´ar, P., Tu, Z., Perona, P., and Belongie, S. (2009). Inte-
gral channel features. In BMVC.
Doll´ar, P., Wojek, C., Schiele, B., and Perona, P. (2012).
Pedestrian detection: An evaluation of the state of the
art. PAMI, 34.
Evans, K. M., Jacobs, R. A., Tarduno, J. A., and Pelz, J. B.
(2012). Collecting and analyzing eye-tracking data
in outdoor environments. Journal of Eye Movement
Research, pages 1–19.
Felzenszwalb, P. F., Girshick, R. B., and McAllester, D.
(2010). Cascade object detection with deformable part
models. In CVPR, pages 2241–2248. IEEE.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.
Gall, J. and Lempitsky, V. (2009). Class-specific hough
forests for object detection. In CVPR.
Henderson, J. M. (2003). Human gaze control during real-
world scene perception. Trends in Cognitive Sciences,
7(11):498 – 504.
Jokinen, K., Nishida, M., and Yamamoto, S. (2009). Eye-
gaze experiments for conversation monitoring. In
Proc. of the 3rd IUCS, pages 303–308.
Judd, T., Ehinger, K., Durand, F., and Torralba, A. (2009).
Learning to predict where humans look. In ICCV,
pages 2106–2113. IEEE.
Leutenegger, S., Chli, M., and Siegwart, R. (2011). Brisk:
Binary robust invariant scalable keypoints. In ICCV.
Lowe, D. (2004). Distinctive image features from scale-
invariant keypoints. In IJCV, pages 91–110.
Mathias, M., Benenson, R., Timofte, R., and Van Gool, L.
(2013). Handling occlusions with franken-classifiers.
Submitted for publication.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool,
L. (2005). A comparison of affine region detectors.
IJCV, 65(1-2):43–72.
Miksik, O. and Mikolajczyk, K. (2012). Evaluation of local
detectors and descriptors for fast feature matching. In
ICPR, pages 2681–2684.
Rosten, E. and Drummond, T. (2005). Fusing points and
lines for high performance tracking. In ICCV, ICCV,
pages 1508–1515.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf.
In ICCV, pages 2564–2571.
Toyama, T., Kieninger, T., Shafait, F., and Dengel, A.
(2012). Gaze guided object recognition using a head-
mounted eye tracker. In ETRA, pages 91–98.
Tuytelaars, T. and Mikolajczyk, K. (2008). Local invariant
VISAPP2014-InternationalConferenceonComputerVisionTheoryandApplications
632