REFERENCES
Achlioptas, D. (2001). Database-friendly random pro-
jections. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’01, pages 274–281, New
York, NY, USA. ACM.
Amankwah, A. and Aldrich, C. (2011). Automatic ore
image segmentation using mean shift and watershed
transform. In Radioelektronika (RADIOELEKTRON-
IKA), 2011 21st International Conference, pages 1–4.
Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M.
(2008). A simple proof of the restricted isometry prop-
erty for random matrices. Constructive Approxima-
tion, 28(3):253–263.
Beucher, S. and Lantuejoul, C. (1979). Use of watersheds
in contour detection. In International Workshop on
image processing, real-time edge and motion detec-
tion/estimation.
Bingham, E. and Mannila, H. (2001). Random projection in
dimensionality reduction: applications to image and
text data. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’01, pages 245–250, New York,
NY, USA. ACM.
Bull, G., Gao, J., and Antolovich, M. (2013). Image seg-
mentation using random features. In The 2013 5th
International Conference on Graphic and Image Pro-
cessing (ICGIP 2013).
Calderbank, R., Jafarpour, S., and Schapire, R. (2009).
Compressed learning: Universal sparse dimensional-
ity reduction and learning in the measurement domain.
Manuscript.
Candes, E. and Tao, T. (2005). Decoding by linear pro-
gramming. Information Theory, IEEE Transactions
on, 51(12):4203–4215.
Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A li-
brary for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27.
Software available at http://www.csie.ntu.edu.tw/
∼cjlin/libsvm.
Comaniciu, D. and Meer, P. (1999). Mean shift analysis and
applications. In Computer Vision, 1999. The Proceed-
ings of the Seventh IEEE International Conference on,
volume 2, pages 1197–1203.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20:273–297.
Demenegas, V. (2008). Fragmentation analysis of opti-
mized blasting rounds in the aitik mine: effect of spe-
cific charge. Master’s thesis, Lule˚a tekniska univer-
sitet.
Dollar, P., Tu, Z., Tao, H., and Belongie, S. (2007). Fea-
ture mining for image classification. In Computer Vi-
sion and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1–8.
Donoho, D. (2006). Compressed sensing. Information The-
ory, IEEE Transactions on, 52(4):1289–1306.
Gao, J., Shi, Q., and Caetano, T. S. (2012). Dimensionality
reduction via compressive sensing. Pattern Recogni-
tion Letters, 33(9):1163 – 1170.
Girdner, K., Kemeny, J., Srikant, A., and McGill, R. (1996).
The split system for analyzing the size distribution of
fragmented rock. In Franklin and Katsabanis, edi-
tors, Measurement of Blast Fragmentation – Proceed-
ings of the FRAGBLAST 5 Workshop., pages 101–108,
Balkema.
Li, P., Hastie, T. J., and Church, K. W. (2006). Very sparse
random projections. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, KDD ’06, pages 287–296,
New York, NY, USA. ACM.
Liu, L. and Fieguth, P. (2012). Texture classification from
random features. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 34(3):574–586.
Meyer, F. and Beucher, S. (1990). Morphological segmen-
tation. Journal of Visual Communication and Image
Representation, 1(1):21 – 46.
Noy, M. J. (2013). Automated rock fragmentation mea-
surement with close range digital photogrammetry. In
Sanchidrian Blanco, J. A.and Singh, A. K., editor,
Measurement and Analysis of Blast Fragmentation:
Workshop FRAGBLAST 10 - The 10th International
Symposium on Rock Fragmentation by Blasting.,
pages 13–21, Boca Raton, Fla. CRC Press/Balkema.
Siddiqui, F., Shah, S. A., and Behan, M. (2009). Measure-
ment of size distribution of blasted rock using digital
image processing. Engineering Sciences, 20(2):81–
93.
Thurley, M. (2009). Fragmentation size measurement us-
ing 3d surface imaging. In Blanco, J. A. S., editor,
Fragblast 9 : Rock Fragmentation By Blasting. Pro-
ceedings of the 9th International Symposium On Rock
Fragmentation By Blasting, pages 229–237, Boca Ra-
ton, Fla. CRC Press/Balkema.
Thurley, M. (2013). Automated, on-line, calibration-free,
particle size measurement using 3d profile data. In
Sanchidrian Blanco, J. A.and Singh, A. K., editor,
Measurement and Analysis of Blast Fragmentation:
FRAGBLAST 10 - The 10th International Symposium
on Rock Fragmentation by Blasting., pages 23–32,
Boca Raton, Fla. CRC Press/Balkema.
Thurley, M. J. and Ng, K. C. (2005). Identifying, visual-
izing, and comparing regions in irregularly spaced 3d
surface data. Computer Vision and Image Understand-
ing, 98(2):239–270.
Viola, P. and Jones, M. (2002). Robust real-time object
detection. International Journal of Computer Vision,
57(2):137–154.
Wright, J., Ganesh, A., Rao, S., Peng, Y., and Ma, Y. (2009).
Robust principal component analysis: Exact recov-
ery of corrupted low-rank matrices via convex opti-
mization. In Bengio, Y., Schuurmans, D., Lafferty, J.,
Williams, C. K. I., and Culotta, A., editors, Advances
in Neural Information Processing Systems 22, pages
2080–2088.
Zhang, K., Zhang, L., and Yang, M.-H. (2012). Real-time
compressive tracking. In Fitzgibbon, A., Lazebnik,
S., Perona, P., Sato, Y., and Schmid, C., editors, Com-
puter Vision - ECCV 2012, volume 7574 of Lecture
Notes in Computer Science, pages 864–877. Springer
Berlin Heidelberg.
DelineationofRockFragmentsbyClassificationofImagePatchesusingCompressedRandomFeatures
401