Improving Color Constancy in the Presence of Multiple Illuminants using Depth Information

Marc Ebner, Johannes Hansen

2014

Abstract

A human observer is able to judge the color of objects independent of the illuminant. In contrast, a digital sensor (or the retinal receptors for that matter) only measure reflected light which varies with the illuminant. The brain is somehow able to compute a color constant descriptor from the light falling onto the retina. We have improved a well known color constancy algorithm based on local space average color. This color constancy algorithm can be mapped to the different visual processing stages of the human brain. We have extended this algorithm by incorporating depth information. The idea is that wherever there are depth discontinuities there may also be a change of the illuminant in the image. Hence, depth discontinuities are used to separate different illuminants. This allows us to better estimate the local illumination and allows us to compute an improved color constant descriptor. We also compute local space average depth to decide locally whether to average data from retinal sensors uniformly or non-uniformly. We show how our algorithm works on real world scenes. Depth information is obtained from a standard Kinect sensor.

References

  1. Agarwal, V., Abidi, B. R., Koschan, A., and Abidi, M. A. (2006). An overview of color constancy algorithms. Journal of Pattern Recognition Research, 1(1):42-54.
  2. Andersen, M. R., Jensen, T., Lisouski, P., Mortensen, A. K., Hansen, M. K., Gregersen, T., and Ahrendt, P. (2012). Kinect depth sensor evaluation for computer vision applications. Technical Report ECE-TR-6, Aarhus University, Denmark.
  3. Barnard, K., Cardei, V., and Funt, B. (2002). A comparison of computational color constancy algorithms - part I and II. IEEE Trans. on Image Processing, 11(9):972- 996.
  4. Barnard, K., Finlayson, G., and Funt, B. (1997). Color constancy for scenes with varying illumination. Computer Vision and Image Understanding, 65(2):311-321.
  5. Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal of the Franklin Institute, 310(1):337-350.
  6. Ebner, M. (2007a). Color Constancy. John Wiley & Sons, England.
  7. Ebner, M. (2007b). Estimating the color of the illuminant using anisotropic diffusion. In Kropatsch, W. G., Kampel, M., and Hanbury, A., eds., Proc. of the 12th Int. Conf. on Computer Analysis of Images and Patterns, Vienna, Austria, pp. 441-449, Berlin. SpringerVerlag.
  8. Ebner, M. (2007c). How does the brain arrive at a color constant descriptor? In Mele, F., Ramella, G., Santillo, S., and Ventriglia, F., eds., Proc. of the 2nd Int. Symp. on Brain, Vision and Artificial Intelligence, Naples, Italy, pp. 84-93, Berlin. Springer.
  9. Ebner, M. (2009). Color constancy based on local space average color. Machine Vision and Applications Journal, 20(5):283-301.
  10. Ebner, M. (2012). A computational model for color perception. Bio-Algorithms and Med-Systems, 8(4):387- 415.
  11. Ebner, M. and Hansen, J. (2013). Depth map color constancy. Bio-Algorithms and Med-Systems (accepted).
  12. Finlayson, G. and Hordley, S. (2001). Colour signal processing which removes illuminant colour temperature dependency. UK Patent Application GB 2360660A.
  13. Gabel, M., Gilad-Bachrach, R., Renshaw, E., and Schuster, A. (2012). Full body gait analysis with Kinect. In Proc. of the Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, pp. 1964-1967. IEEE.
  14. Gilchrist, A. L. (1977). Perceived lightness depends on perceived spatial arrangement. Science, 195:185-187.
  15. Horn, B. K. P. (1986). Robot Vision. The MIT Press, Cambridge, MA.
  16. Jain, R., Kasturi, R., and Schunck, B. G. (1995). Machine Vision. McGraw-Hill, Inc., New York.
  17. Kofler, M. (2011). Inbetriebahme und untersuchung des Kinect sensors. Master's thesis, FH Oberösterreich, O sterreich.
  18. Land, E. H. and McCann, J. J. (1971). Lightness and retinex theory. Journal of the Optical Society of America, 61(1):1-11.
  19. Livingstone, M. S. and Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex. The Journal of Neuroscience, 4(1):309-356.
  20. Microsoft Corporation (2011). Programming with the Kinect for Windows SDK.
  21. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011). Kinectfusion: Realtime dense surface mapping and tracking. In Proc. of the 10th IEEE Int. Symp. on Mixed and Augmented Reality, pp. 127-136. IEEE.
  22. Ramachandran, V. S. (1993). Filling in gaps in perception: Part II. Scotomas and phantom limbs. Current Directions in Psychological Science, 2(2):56-65.
  23. van de Weijer, J., Gevers, T., and Gijsenij, A. (2007). Edgebased color constancy. IEEE Trans. on Image Processing, 16(9):2207-2214.
  24. Zeki, S. (1993). A Vision of the Brain. Blackwell Science, Oxford.
  25. Zeki, S., Watson, J. D. G., Lueck, C. J., Friston, K. J., Kennard, C., and Frackowiak, R. S. J. (1991). A direct demonstration of functional specialization in human visual cortex. The Journal of Neuroscience, 11(3):641-649.
Download


Paper Citation


in Harvard Style

Ebner M. and Hansen J. (2014). Improving Color Constancy in the Presence of Multiple Illuminants using Depth Information . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 133-140. DOI: 10.5220/0004743601330140


in Bibtex Style

@conference{biosignals14,
author={Marc Ebner and Johannes Hansen},
title={Improving Color Constancy in the Presence of Multiple Illuminants using Depth Information},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},
year={2014},
pages={133-140},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004743601330140},
isbn={978-989-758-011-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Improving Color Constancy in the Presence of Multiple Illuminants using Depth Information
SN - 978-989-758-011-6
AU - Ebner M.
AU - Hansen J.
PY - 2014
SP - 133
EP - 140
DO - 10.5220/0004743601330140