Region-constrained Feature Matching with Hierachical Agglomerative Clustering

Jung Whan Jang, Mostafiz Mehebuba Hossain, Hyuk-Jae Lee

2014

Abstract

Local feature matching is one of the most fundamental issues in computer vision. Hierarchical agglomerative clustering (HAC) has been effectively used to distinguish inliers from outliers. The drawback of HAC is its large computational complexity which increases rapidly as the number of feature correspondences increases. To overcome this drawback, this paper proposes a region-constrained feature matching in which an image is segmented into small regions and feature correspondences are clustered inside each region. Adjacent segmented regions are merged to form larger regions if the correspondences inside regions are similar. The merge may increase the accuracy of clustering, and consequently, it improves the accuracy of matching operations as well. The proposed region-constrained clustering dramatically reduces the execution time by as much as 500 times compared to the previous clustering while it achieves a similar matching accuracy.

References

  1. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110.
  2. Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer vision and image understanding, 110(3), 346-359.
  3. Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better: A machine learning approach to corner detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(1), 105-119.
  4. Gomila, C., & Meyer, F. (2003). Graph-based object tracking. In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on (Vol. 2, pp. II-41). IEEE.
  5. Duchenne, O., Bach, F., Kweon, I. S., & Ponce, J. (2011). A tensor-based algorithm for high-order graph matching. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(12), 2383-2395.
  6. Cho, M., Lee, J., & Lee, K. M. (2009). Feature correspondence and deformable object matching via agglomerative correspondence clustering. InComputer Vision, 2009 IEEE 12th International Conference on (pp. 1280-1287). IEEE.
  7. Friedman, J., Hastie, T., & Tibshirani, R. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics.
  8. Xu, Rui, and Donald Wunsch. "Survey of clustering algorithms." Neural Networks, IEEE Transactions on 16.3 (2005): 645-678.
  9. Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10), 1615-1630.
  10. Ferrari, V., Tuytelaars, T., & Van Gool, L. (2006). Simultaneous object recognition and segmentation from single or multiple model views. International Journal of Computer Vision, 67(2), 159-188.
  11. Ferrari, V., Tuytelaars, T., & Van Gool, L. (2004). Simultaneous object recognition and segmentation by image exploration. In Computer Vision-ECCV 2004 (pp. 40-54). Springer Berlin Heidelberg.
  12. Kim, T. H., Lee, K. M., & Lee, S. U. (2010). A unified probabilistic approach to feature matching and object segmentation. In Pattern Recognition (ICPR), 2010 20th International Conference on (pp. 464-467). IEEE.
  13. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(1/2):43- 72.
  14. Torresani, L., Kolmogorov, V., & Rother, C. (2008). Feature correspondence via graph matching: Models and global optimization. In Computer Vision-ECCV 2008 (pp. 596-609).
Download


Paper Citation


in Harvard Style

Whan Jang J., Mehebuba Hossain M. and Lee H. (2014). Region-constrained Feature Matching with Hierachical Agglomerative Clustering . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 15-22. DOI: 10.5220/0004744800150022


in Bibtex Style

@conference{visapp14,
author={Jung Whan Jang and Mostafiz Mehebuba Hossain and Hyuk-Jae Lee},
title={Region-constrained Feature Matching with Hierachical Agglomerative Clustering},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={15-22},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004744800150022},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - Region-constrained Feature Matching with Hierachical Agglomerative Clustering
SN - 978-989-758-003-1
AU - Whan Jang J.
AU - Mehebuba Hossain M.
AU - Lee H.
PY - 2014
SP - 15
EP - 22
DO - 10.5220/0004744800150022