classification accuracy. The presented method can
also be used beyond the classification purpose. More
specifically, the two-level approach can be employed
to automatically extract areas of reduced perception
in the visual field assessed with methods other than
perimetry, e.g., with EFOV (Tafaj et al., 2013), which
measures the visual exploration capability of a subject
based on the online analysis of eye movements (Tafaj
et al., 2012). Besides its usage in local diagnostic pro-
cesses, e.g., assisting the clinical routine, the method
could also be used in tele-medicine. Further improve-
ments of the presented algorithm include: (1) the re-
finement of the decision rules and the investigation
of further features, such as features related to the pa-
tient’s general health condition, with the focus on the
glaucoma defect type, (2) the development of a user-
friendly interface for individual threshold adaptation,
and (3) integration with other software tools for vision
research, such as Vishnoo (Tafaj et al., 2011b).
REFERENCES
Aulhorn, E. and Karmeyer, H. (1977). Frequency distribu-
tion in early glaucomatous visual field defects. Doc-
umenta Ophthalmologica Proceedings Series, 14:75–
83.
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., and
Nielsen, H. (2000). Assessing the accuracy of predic-
tion algorithms for classification: an overview. Bioin-
formatics, 16(5):412–424.
Bengtsson, B., Bizios, D., and Heijl, A. (2005). Effects
of input data on the performance of a neural net-
work in distinguishing normal and glaucomatous vi-
sual fields. Investigative Ophthalmology & Visual Sci-
ence, 46(10):3730–3736.
Bizios, D., Heijl, A., and Bengtsson, B. (2007). Trained
artificial neural network for glaucoma diagnosis using
visual field data: a comparison with conventional al-
gorithms. Journal of Glaucoma, 16(1):20–28.
Boden, C., Chan, K., Sample, P. A., Hao, J., Lee, T.,
Zangwill, L. M., Weinreb, R. N., and Goldbaum,
M. H. (2007). Assessing Visual Field Clustering
Schemes Using Machine Learning Classifiers in Stan-
dard Perimetry. Investigative Ophthalmology & Visual
Science, 48(12):5582–5590.
Brigatti, L., Nouri-Mahdavi, K., Weitzmann, M., and Capri-
oli, J. (1997). Automatic Detection of Glaucoma-
tous Visual Field Progression with Neural Networks.
Archives of Ophthalmology, 115(6):725–728.
Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pat-
tern Classification (2nd Edition). Wiley-Interscience,
2 edition.
Fink, W. (2004). Neural attractor network for application
in visual field data classification. Physics in Medicine
and Biology, 49(13):2799–2809.
Flach, P. (2012). Machine Learning: The art and science of
algorithms that make sense of data. Cambridge Uni-
versity Press.
Goldbaum, M. H. (2005). Unsupervised learning with in-
dependent component analysis can identify patterns of
glaucomatous visual field defects. Transactions of the
Americal Ophthalmological Society, 103:270–280.
Goldbaum, M. H., Jang, G. J., Bowd, C., Hao, J., Zangwill,
L. M., Liebmann, J., Girkin, C., Jung, T. P., Wein-
reb, R. N., and Sample, P. A. (2009). Patterns of
glaucomatous visual field loss in SITA fields automat-
ically identified using independent component analy-
sis. Transactions of the Americal Ophthalmological
Society, 107:136–144.
Goldbaum, M. H., Sample, P. A., Chan, K., Williams, J.,
Lee, T. W., Blumenthal, E., Girkin, C. A., Zangwill,
L. M., Bowd, C., Sejnowski, T., and Weinreb, R. N.
(2002). Comparing machine learning classifiers for di-
agnosing glaucoma from standard automated perime-
try. Investigative Ophthalmology & Visual Science,
43(1):162–169.
Goldbaum, M. H., Sample, P. A., White, H., Colt, B.,
Raphaelian, P., Fechtner, R. D., and Weinreb, R. N.
(1994). Interpretation of automated perimetry for
glaucoma by neural network. Investigative Ophthal-
mololgy & Visual Science, 35(9):3362–3373.
Henson, D. B., Spenceley, S. E., and Bull, D. R. (1996).
Spatial classification of glaucomatous visual field
loss. British Journal of Ophthalmology, 80(6):526–
531.
Henson, D. B., Spenceley, S. E., and Bull, D. R. (1997).
Artificial neural network analysis of noisy visual field
data in glaucoma. Artificial Intelligence in Medicine,
10(2):99–113.
Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data
clustering: a review. ACM Computing Surveys,
31(3):264–323.
J
¨
urgens, C., Koch, T., Burth, R., Schiefer, U., and Zell, A.
(2001). Classification of perimetric results and reduc-
tion of number of test locations using artificial neural
networks [arvo abstract nr. 4539]. Investigative Oph-
thalmology & Visual Science, 42(4):846.
Kaski, S. (1997). Data exploration using self-organizing
maps. In Acta Polytechnica Scandinavica: Mathe-
matics, Computing and Management in Engineering
Series No 82.
Keating, D., Mutlukan, E., Evans, A., McGarvie, J., and
Damato, B. (1993). A back propagation neural net-
work for the classification of visual field data. Physics
in Medicine and Biology, 38(9):1263.
Kohonen, T. (1990). The self-organizing map. Proceedings
of the IEEE, 78(9):1464–1480.
Mangiameli, P., Chen, S. K., and West, D. (1996). A com-
parison of som neural network and hierarchical clus-
tering methods. European Journal of Operational Re-
search, 93(2):402–417.
Mutlukan, E. and Keating, D. (1994). Visual field interpre-
tation with a personal computer based neural network.
Eye, 8(3):321–323.
Nevalainen, J., Krapp, E., Paetzold, J., Mildenberger, I.,
Besch, D., Vonthein, R., Keltner, J. L., Johnson, C. A.,
Rule-basedClassificationofVisualFieldDefects
41