though combined with the camera CRS displacement
technique does not allow to obtain a good accuracy
for altitude lags greater than 185 cm.
All the methods deal with small rotations in the
floor plane, except the Vertical 2D Fourier Transform
Phase, since it is very sensitive to the change in the
phase of the Fourier Transform coefficients.
The future work should extend this research to in-
clude topological distance estimation taking into ac-
count 6D movements and topological mapping.
REFERENCES
Amor´os, F., Pay´a, L., Reinoso,
´
O., Mayol-Cuevas, W., and
Calway, A. (2013). Topological map building and
path estimation using global-appearance image de-
scriptors. In ICINCO 2013, International Conference
on Informatics in Control, Automation and Robotics.
Bay, H., Tuytelaars, T., and Gool, L. (2006). Surf: Speeded
up robust features. In Leonardis, A., Bischof, H., and
Pinz, A., editors, Computer Vision at ECCV 2006,
volume 3951 of Lecture Notes in Computer Science,
pages 404–417. Springer Berlin Heidelberg.
Bonev, B., Cazorla, M., and Escolano, F. (2007). Robot
navigation behaviors based on omnidirectional vision
and information theory. Journal of Physical Agents,
1(1):27–36.
Briggs, A. J., Detweiler, C., Mullen, P. C., and Scharstein,
D. (2004). Scale-space features in 1d omnidirectional
images. In in Omnivis 2004, the Fifth Workshop on
Omnidirectional Vision, pages 115–126.
Chang, C.-K., Siagian, C., and Itti, L. (2010). Mobile robot
vision navigation amp; localization using gist and
saliency. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages
4147–4154.
Driscoll, J. and Healy, D. (1994). Computing fourier trans-
forms and convolutions on the 2-sphere. Advances in
Applied Mathematics, 15(2):202 – 250.
Han, K., Aeschliman, C., Park, J., Kak, A., Kwon, H.,
and Pack, D. (2012). Uav vision: Feature based
accurate ground target localization through propa-
gated initializations and interframe homographies. In
Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, pages 944–950.
Huhle, B., Schairer, T., Schilling, A., and Strasser, W.
(2010). Learning to localize with gaussian process re-
gression on omnidirectional image data. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 5208–5213.
Lowe, D. (1999). Object recognition from local scale-
invariant features. In Computer Vision, 1999. The Pro-
ceedings of the Seventh IEEE International Confer-
ence on, volume 2, pages 1150–1157 vol.2.
Makadia, A., Sorgi, L., and Daniilidis, K. (2004). Rotation
estimation from spherical images. In Pattern Recog-
nition, 2004. ICPR 2004. Proceedings of the 17th In-
ternational Conference on, volume 3, pages 590–593
Vol.3.
Maohai, L., Han, W., Lining, S., and Zesu, C. (2013). Ro-
bust omnidirectional mobile robot topological naviga-
tion system using omnidirectional vision. Engineering
Applications of Artificial Intelligence.
McEwen, J. and Wiaux, Y. (2011). A novel sampling theo-
rem on the sphere. Signal Processing, IEEE Transac-
tions on, 59(12):5876–5887.
Menegatti, E., Maeda, T., and Ishiguro, H. (2004). Image-
based memory for robot navigation using properties
of omnidirectional images. Robotics and Autonomous
Systems, 47(4):251 – 267.
Mondrag´on, I. F., Olivares-M´endez, M., Campoy, P.,
Mart´ınez, C., and Mejias, L. (2010). Unmanned aerial
vehicles uavs attitude, height, motion estimation and
control using visual systems. Autonomous Robots,
29(1), 17-34.
Pay´a, L., Fern´andez, L., Gil, A., and Reinoso, O. (2010).
Map building and monte carlo localization using
global appearance of omnidirectional images. Sen-
sors, 10(12):11468–11497.
Roebert, S., Schmits, T., and Visser, A. (2008). Creating
a bird-eye view map using an omnidirectional cam-
era. In BNAIC 2008: Proceedings of the twentieth
Belgian-Dutch Conference on Artificial Intelligence.
Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006). A
flexible technique for accurate omnidirectional cam-
era calibration and structure from motion. In Com-
puter Vision Systems, 2006 ICVS ’06. IEEE Interna-
tional Conference on, page 45.
Schairer, T., Huhle, B., and Strasser, W. (2009). Increased
accuracy orientation estimation from omnidirectional
images using the spherical fourier transform. In 3DTV
Conference: The True Vision - Capture, Transmission
and Display of 3D Video, 2009, pages 1–4.
Schairer, T., Huhle, B., Vorst, P., Schilling, A., and Strasser,
W. (2011). Visual mapping with uncertainty for
correspondence-free localization using gaussian pro-
cess regression. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on,
pages 4229–4235.
Valiente, D., Gil, A., Fern´andez, L., and Reinoso,
´
O. (2012).
View-based slam using omnidirectional images. In
ICINCO 2012 (2), pages 48–57.
Wang, C., Wang, T., Liang, J., Chen, Y., Zhang, Y., and
Wang, C. (2012). Monocular visual slam for small
uavs in gps-denied environments. In Robotics and
Biomimetics (ROBIO), 2012 IEEE International Con-
ference on, pages 896–901.
Winters, N., Gaspar, J., Lacey, G., and Santos-Victor, J.
(2000). Omni-directional vision for robot navigation.
In Omnidirectional Vision, 2000. Proceedings. IEEE
Workshop on, pages 21–28.
TowardsRelativeAltitudeEstimationinTopologicalNavigationTasksusingtheGlobalAppearanceofVisualInformation
201