ting. In Computer Vision–ECCV 2010, pages 533–
546. Springer.
Chum, O. and Matas, J. (2005). Matching with prosac-
progressive sample consensus. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
220–226. IEEE.
Chum, O., Matas, J., and Kittler, J. (2003). Locally opti-
mized ransac. In Pattern Recognition, pages 236–243.
Springer.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
24(5):603–619.
Jegou, H., Douze, M., and Schmid, C. (2008). Hamming
embedding and weak geometric consistency for large
scale image search. In Computer Vision–ECCV 2008,
pages 304–317. Springer.
Jiang, Y., Meng, J., and Yuan, J. (2011). Grid-based local
feature bundling for efficient object search and local-
ization. In Image Processing (ICIP), 2011 18th IEEE
International Conference on, pages 113–116. IEEE.
Kalantidis, Y., Pueyo, L. G., Trevisiol, M., van Zwol, R.,
and Avrithis, Y. (2011). Scalable triangulation-based
logo recognition. In Proceedings of the 1st ACM
International Conference on Multimedia Retrieval,
page 20. ACM.
Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond
bags of features: Spatial pyramid matching for rec-
ognizing natural scene categories. In Computer Vi-
sion and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 2, pages 2169–2178.
IEEE.
Li, T., Mei, T., Kweon, I.-S., and Hua, X.-S. (2011). Con-
textual bag-of-words for visual categorization. Cir-
cuits and Systems for Video Technology, IEEE Trans-
actions on, 21(4):381–392.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Ni, K., Jin, H., and Dellaert, F. (2009). Groupsac: Efficient
consensus in the presence of groupings. In Computer
Vision, 2009 IEEE 12th International Conference on,
pages 2193–2200. IEEE.
Raguram, R., Frahm, J.-M., and Pollefeys, M. (2008). A
comparative analysis of ransac techniques leading to
adaptive real-time random sample consensus. In Com-
puter Vision–ECCV 2008, pages 500–513. Springer.
Russell, B. C., Freeman, W. T., Efros, A. A., Sivic, J.,
and Zisserman, A. (2006). Using multiple segmen-
tations to discover objects and their extent in image
collections. In Computer Vision and Pattern Recog-
nition, 2006 IEEE Computer Society Conference on,
volume 2, pages 1605–1614. IEEE.
Sattler, T., Leibe, B., and Kobbelt, L. (2009). Scramsac: Im-
proving ransac’s efficiency with a spatial consistency
filter. In Computer Vision, 2009 IEEE 12th Interna-
tional Conference on, pages 2090–2097. IEEE.
Sivic, J. and Zisserman, A. (2003). Video google: A text
retrieval approach to object matching in videos. In
Computer Vision, 2003. Proceedings. Ninth IEEE In-
ternational Conference on, pages 1470–1477. IEEE.
Sivic, J. and Zisserman, A. (2009). Efficient visual search of
videos cast as text retrieval. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 31(4):591–
606.
Tordoff, B. J. and Murray, D. W. (2005). Guided-mlesac:
Faster image transform estimation by using match-
ing priors. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 27(10):1523–1535.
Torr, P. H. and Zisserman, A. (2000). Mlesac: A new ro-
bust estimator with application to estimating image
geometry. Computer Vision and Image Understand-
ing, 78(1):138–156.
Wu, Z., Ke, Q., Isard, M., and Sun, J. (2009). Bundling
features for large scale partial-duplicate web image
search. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 25–32.
IEEE.
Zhang, Y., Jia, Z., and Chen, T. (2011). Image retrieval
with geometry-preserving visual phrases. In Com-
puter Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 809–816. IEEE.
ExploringResidualandSpatialConsistencyforObjectDetection
197