REFERENCES
Bergman, R., Ider, Y., Bowden, C., and Cobelli, C.
(1979). Quantitative estimation of insulin sensitivity.
American Journal of Physiology-Endocrinology And
Metabolism, 236(6):E667.
Bhattacharyya, S. (1978). Observer design for linear sys-
tems with unknown inputs. Automatic Control, IEEE
Transactions on, 23(3):483–484.
Boutat, D. (2007). Geometrical conditions for observer
error linearization via
R
0,1,...,(N − 2). In 7th IFAC
Symposium on Nonlinear Control Systems Nolcos’07,.
Boutat, D., Benali, A., Hammouri, H., and Busawon, K.
(2009). New algorithm for observer error linearization
with a diffeomorphism on the outputs. Automatica,
45(10):21872193.
Boutat, D. and Busawon, K. (2011). On the transformation
of nonlinear dynamical systems into the extended non-
linear observable canonical form. International Jour-
nal of Control, 84(1):94–106.
Chee, F., Fernando, T., and van Heerden, P. V. (2003).
Closed-loop glucose control in critically ill patients
using continuous glucose monitoring system (cgms)
in real time. Information Technology in Biomedicine,
IEEE Transactions on, 7(1):43–53.
Darouach, M., Zasadzinski, M., and Xu, S. (1994). Full-
order observers for linear systems with unknown in-
puts. Automatic Control, IEEE Transactions on,
39(3):606–609.
Eberle, C. and Ament, C. (2012). Identifiability and online
estimation of diagnostic parameters with in the glu-
cose insulin homeostasis. Biosystems, 107(3):135 –
141.
Gonz´alez, P. and Femat, R. (2011). Control of glucose con-
centration in type 1 diabetes mellitus with discrete-
delayed measurements. In 18th IFAC World Congress
Milano (Italy), August.
Hariri, A. and Wang, Y. (2011). Observer-based state feed-
back for enhanced insulin control of type idiabetic pa-
tients. The Open Biomedical Engineering Journal,
5:98.
Hui, S. and Zak, S. (2005). Observer design for systems
with unknown inputs. International Journal of Ap-
plied Mathematics and Computer Science, 15(4):431.
Krener, A. and Isidori, A. (1983). Linearization by output
injection and nonlinear observers. Systems & Control
Letters,, 3(1):47–52.
Kudva, P., Viswanadham, N., and Ramakrishna, A. (1980).
Observers for linear systems with unknown inputs.
IEEE Transactions on Automatic Control, 25:113–
115.
L Kovcs, B Palncz, Z. B. (2007). Design of luenberger
observer for glucose-insulin control via mathematica.
In Engineering in Medicine and Biology Society, 29th
Annual International Conference of the IEEE.
Magni, L., Raimondo, D., Bossi, L., Dalla Man, C.,
De Nicolao, G., Kovatchev, B., and Cobelli, C. (2007).
Artificial pancreas: Closed-loop control of glucose
variability in diabetes: Model predictive control of
type 1 diabetes: An in silico trial. Journal of diabetes
science and technology (Online), 1(6):804.
Parker, R., Doyle III, F., and Peppas, N. (1999). A model-
based algorithm for blood glucose control in type i di-
abetic patients. Biomedical Engineering, IEEE Trans-
actions on, 46(2):148–157.
Percival, M., Zisser, H., Jovanoviˇc, L., and Doyle III,
F. (2008). Closed-loop control and advisory mode
evaluation of an artificial pancreatic β cell: Use
of proportional–integral–derivative equivalent model-
based controllers. Journal of diabetes science and
technology, 2(4):636.
Respondek, W. and Pogromsky, A. & Nijmeijer, H. (2004).
Time scaling for observer design with linearizable er-
ror dynamics. Automatica,, 40 (2):277–285.
Villafaa-Rojas, J., Gonzlez-Reynoso, O., Alcaraz-Gonzlez,
V., Gonzlez-Garca, Y., Gonzlez-?lvarez, V., Sols-
Pacheco, J. R., Aguilar-Uscanga, B., and Gmez-
Hermosillo, C. (2013). Asymptotic observers a tool
to estimate metabolite concentrations under transient
state conditions in biological systems: Determination
of intermediate metabolites in the pentose phosphate
pathway of saccharomyces cerevisiae. Chemical En-
gineering Science, 104(0):73 – 81.
Yang, F. and Wilde, R. (1988). Observers for linear sys-
tems with unknown inputs. Automatic Control, IEEE
Transactions on, 33(7):677–681.
BIOSIGNALS2014-InternationalConferenceonBio-inspiredSystemsandSignalProcessing
26