Dweep, H., Sticht, C., Pandey, P., et al. (2011). miRWalk -
Database: Prediction of possible miRNA binding sites
by ”walking” the genes of three genomes. J Biomed
Inform, 44(5):839–47.
Eckart, C. and Young, G. (1936). The approximation of
one matrix by another of lower rank. Psychometrika,
1:211–8.
Fabian, M. R. and Sonenberg, N. (2012). The mechanics
of miRNA-mediated gene silencing: a look under the
hood of miRISC. Nat Struct Mol Biol, 19(6):586–93.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002).
Gene selection for cancer classification using support
vector machines. Machine Learning, 46:389–422.
Huang, G. T., Athanassiou, C., and Benos, P. V. (2011).
mirConnX: condition-specific mRNA-microRNA net-
work integrator. Nucleic acids res, 39(Web Server
issue):W416–23.
Joachims, T. (1998). Text categorization with support
vector machines: Learning with many relevant fea-
tures. In European Conference on Machine Learning
(ECML), pages 137–42, Berlin. Springer.
Kim, D., Shin, H., Song, Y. S., et al. (2012). Synergis-
tic effect of different levels of genomic data for can-
cer clinical outcome prediction. J Biomed Inform,
45(6):1191–8.
Kozomara, A. and Griffiths-Jones, S. (2011). miRBase: in-
tegrating microRNA annotation and deep-sequencing
data. Nucleic Acids Res, 39(Database-Issue):152–7.
Krek, A., Gr¨un, D., Poy, M. N., et al. (2005). Combina-
torial microRNA target predictions. Nature genetics,
37(5):495–500.
Lanza, G., Ferracin, M., Gaf`a, R., et al. (2007).
mRNA/microRNA gene expression profile in mi-
crosatellite unstable colorectal cancer. Mol Cancer,
6:54+.
Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The
C. elegans heterochronic gene lin-4 encodes small
RNAs with antisense complementarity to lin-14. Cell,
75(5):843–54.
Lewis, B. P., Shih, I.-h. H., Jones-Rhoades, M. W., et al.
(2003). Prediction of mammalian microRNA targets.
Cell, 115(7):787–98.
Li, W., Zhang, S.-H., et al. (2012). Identifying multi-layer
gene regulatory modules from multi-dimensional ge-
nomic data. Bioinformatics, 28(19):2458–66.
Morin, R., Bainbridge, M., Fejes, A., et al. (2008). Profil-
ing the HeLaS3 transcriptome using randomly primed
cDNA and massively parallel short-read sequencing.
BioTechniques, 45(1):81–94.
Peng, X., Li, Y., Walters, K. A., et al. (2009). Compu-
tational identification of hepatitis C virus associated
microRNA-mRNA regulatory modules in human liv-
ers. BMC Genomics, 10(1):373+.
Pollack, J. R., Sørlie, T., Perou, C. M., et al. (2002). Mi-
croarray analysis reveals a major direct role of DNA
copy number alteration in the transcriptional program
of human breast tumors. Proc Natl Acad Sci U S A,
99(20):12963–8.
Rhyasen, G. W. and Starczynowski, D. T. (2012). Dereg-
ulation of microRNAs in myelodysplastic syndrome.
Leukemia, 26(1):13–22.
Sayed, D. and Abdellatif, M. (2011). MicroRNAs in devel-
opment and disease. Physiol Rev, 91(3):827–87.
Smith, T. F. and Waterman, M. S. (1981). Identification
of common molecular subsequences. J Mol Biol,
147(1):195–7.
Stranger, B. E., Forrest, M. S., Dunning, M., et al.
(2007). Relative impact of nucleotide and copy num-
ber variation on gene expression phenotypes. Science,
315(5813):848–53.
Tan Gana, N. H., Victoriano, A. F., and Okamoto, T. (2012).
Evaluation of online miRNA resources for biomedical
applications. Genes to Cells, 17(1):11–27.
Tran, D. H., Satou, K., and Ho, T. B. (2008). Finding mi-
croRNA regulatory modules in human genome using
rule induction. BMC Bioinformatics, 9(S-12).
Vaˇs´ıkov´a, A., Bˇeliˇckov´a, M., Budinsk´a, E., et al. (2010). A
distinct expression of various gene subsets in cd34+
cells from patients with early and advanced myelodys-
plastic syndrome. Leuk Res, 34(12):1566–72.
Wang, X. and Naqa, I. M. E. (2008). Prediction of both
conserved and nonconserved microRNA targets in an-
imals. Bioinformatics, 24(3):325–32.
Witten, D. M. and Tibshirani, R. J. (2009). Extensions of
sparse canonical correlation analysis with applications
to genomic data. Stat Appl Genet Mol Biol, 8(1):28.
Zhang, S.-H., Li, Q., et al. (2011). A novel computational
framework for simultaneous integration of multiple
types of genomic data to identify microRNA-gene
regulatory modules. Bioinformatics, 27(13):401–409.
Knowledge-basedSubtractiveIntegrationofmRNAandmiRNAExpressionProfilestoDifferentiateMyelodysplastic
Syndrome
39