An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation

Chathurika Dharmagunawardhana, Sasan Mahmoodi, Michael Bennett, Mahesan Niranjan

2014

Abstract

In statistical model based texture feature extraction, features based on spatially varying parameters achieve higher discriminative performances compared to spatially constant parameters. In this paper we formulate a novel Bayesian framework which achieves texture characterization by spatially varying parameters based on Gaussian Markov random fields. The parameter estimation is carried out by Metropolis-Hastings algorithm. The distributions of estimated spatially varying parameters are then used as successful discriminant texture features in classification and segmentation. Results show that novel features outperform traditional Gaussian Markov random field texture features which use spatially constant parameters. These features capture both pixel spatial dependencies and structural properties of a texture giving improved texture features for effective texture classification and segmentation.

References

  1. Alpert, S., Galun, M., Basri, R., and Brandt, A. (2007). Image segmentation by probabilistic bottom-up aggregation and cue integration. In Proc. of the IEEE Conf. Computer Vision and Pattern Recognition.
  2. Aykroyd, R. (1998). Bayesian estimation for homogeneous and inhomogeneous gaussian random fields. IEEE Trans. on pattern analysis and machine intelligence, 20:533-539.
  3. Brodatz, P. (1996). Textures: A Photographic Album for Artists and Designers. New York: Dover.
  4. Chellappa, R. and Chatterjee, S. (1985). Classification of textures using Gaussian Markov random fields. IEEE Trans. on Acoustics Speech and Signal Processing, 33(4):959-963.
  5. Dharmagunawardhana, C., Mahmoodi, S., Bennett, M., and Mahesan, N. (2012). Unsupervised texture segmentation using active contours and local distributions of Gaussian Markov random field parameters. In Proc. British Machine Vision Conference, pages 88.1- 88.11.
  6. Hadjidemetriou, E., Grossberg, M. D., and Nayar, S. K. (2003). Multiresolution histograms and their use for texture classification. In Int'l Workshop on Texture Analysis and Synthesis, Nice, France.
  7. Heikkila, M. and Ahonen, T. (2012). Uniform Local Binary Patterns: Matlab code. http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab.
  8. Li, S. Z. (2009). Markov Random Field Modeling in Image Analysis. Springer-Verlag London Ltd, 3rd edn edition.
  9. Mahmoodi, S. and Gunn, S. (2011). Snake based unsupervised texture segmentation using Gaussian Markov random field models. In Proc. 18th IEEE Int'l Conf. Image Processing, pages 1-4.
  10. Manjunath, B. S. and Chellappa, R. (1991). Unsupervised texture segmentation using Markov random field models. IEEE Trans. on pattern analysis and machine intelligence, 13(5):478-482.
  11. Martin, D., Fowlkes, Tal, D., and Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. 8th Int'l Conf. Computer Vision, pages 416-423.
  12. Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on pattern analysis and machine intelligence, 24:971- 987.
  13. Ojala, T., Valkealahti, K., Oja, E., and Pietikäinen, M. (2001). Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognition, 34:727-739.
  14. Petrou, M. and Sevilla, P. G. (2006). Image Processing, Dealing with Texture. John Wiley & Sons Ltd.
  15. Valkealahti, K. and Oja, E. (1998). Reduced multidimensional co-occurrence histograms in texture classification. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20:90-94.
  16. Zhao, Y., Zhang, L., Li, P., and Huang, B. (2007). Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features. IEEE Trans. on Geoscience and Remote Sensing, 45(5):1458-1468.
Download


Paper Citation


in Harvard Style

Dharmagunawardhana C., Mahmoodi S., Bennett M. and Niranjan M. (2014). An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 139-146. DOI: 10.5220/0004752501390146


in Bibtex Style

@conference{icpram14,
author={Chathurika Dharmagunawardhana and Sasan Mahmoodi and Michael Bennett and Mahesan Niranjan},
title={An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={139-146},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004752501390146},
isbn={978-989-758-018-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation
SN - 978-989-758-018-5
AU - Dharmagunawardhana C.
AU - Mahmoodi S.
AU - Bennett M.
AU - Niranjan M.
PY - 2014
SP - 139
EP - 146
DO - 10.5220/0004752501390146