Probabilistic Cognitive Maps - Semantics of a Cognitive Map when the Values are Assumed to be Probabilities
Aymeric Le Dorze, Béatrice Duval, Laurent Garcia, David Genest, Philippe Leray, Stéphane Loiseau
2014
Abstract
Cognitive maps are a knowledge representation model that describes influences between concepts by a graph, where each influence is quantified by a value. The values are generally not formally defined. In this paper, we introduce a new cognitive map model, the probabilistic cognitive maps. In such maps, the values of the influences are interpreted as probability values. We define formally the semantics of this model. We also provide an operation to compute the global influence of a concept on any other one, called the probabilistic propagated influence. To show that our model is valid, we propose a procedure to represent a probabilistic cognitive map as a Bayesian network. This new model strengthens cognitive maps by giving them strong semantics. Moreover, it acts as a bridge between cognitive maps and Bayesian networks.
References
- Aguilar, J. (2005). A survey about fuzzy cognitive maps papers. International Journal of Computational Cognition, 3(2):27-33.
- Axelrod, R. M. (1976). Structure of decision: the cognitive maps of political elites. Princeton, NJ, USA.
- Celik, F. D., Ozesmi, U., and Akdogan, A. (2005). Participatory Ecosystem Management Planning at Tuzla Lake (Turkey) Using Fuzzy Cognitive Mapping. eprint arXiv:q-bio/0510015.
- Charniak, E. and McDermott, D. (1985). Introduction to Artificial Intelligence. Addison-Wesley, Reading MA.
- Chauvin, L., Genest, D., Le Dorze, A., and Loiseau, S. (2013). User Centered Cognitive Maps. In Guillet, F., Pinaud, B., Venturini, G., and Zighed, D. A., editors, Advances in Knowledge Discovery and Management, volume 471 of Studies in Computational Intelligence, pages 203-220. Springer.
- Cheah, W. P., Kim, K.-Y., Yang, H.-J., Choi, S.-Y., and Lee, H.-J. (2007). A manufacturing-environmental model using Bayesian belief networks for assembly design decision support. In Okuno, H. G. and Ali, M., editors, IEA/AIE 2007, volume 4570 of Lecture Notes in Computer Science, pages 374-383. Springer.
- Chickering, D. M. (1996). Learning Bayesian Networks is NP-Complete. In Learning from Data: Artificial Intelligence and Statistics V, pages 121-130. SpringerVerlag.
- Das, B. (2004). Generating Conditional Probabilities for Bayesian Networks: Easing the Knowledge Acquisition Problem. CoRR, cs.AI/0411034.
- Dickerson, J. A. and Bart, K. (1994). Virtual Worlds as Fuzzy Cognitive Maps. Presence, 3(2):73-89.
- Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machines Studies, 24:65-75.
- Krichène, J. and Boudriga, N. (2008). Incident Response Probabilistic Cognitive Maps. In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA 2008), pages 689-694, Los Alamitos, CA, USA. IEEE.
- Le Dorze, A., Duval, B., Garcia, L., Genest, D., Leray, P., and Loiseau, S. (2013). Probabilistic Cognitive Maps. Technical report, LERIA - Université d'Angers.
- Lemmer, J. F. and Gossink, D. E. (2004). Recursive noisy or - a rule for estimating complex probabilistic interactions. Transactions on Systems, Man, Cybernetics Part B, 34(6):2252-2261.
- Levi, A. and Tetlock, P. E. (1980). A Cognitive Analysis of Japan's 1941 Decision for War. The Journal of Conflict Resolution, 24(2):195-211.
- Nadkarni, S. and Shenoy, P. P. (2001). A Bayesian network approach to making inferences in causal maps. European Journal of Operational Research, 128(3):479- 498.
- Nadkarni, S. and Shenoy, P. P. (2004). A causal mapping approach to constructing Bayesian networks. Decision Support Systems, 38(2):259-281.
- Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- Pearl, J. (2009). Causality: Models, Reasoning and Inference. Cambridge University Press, New York, NY, USA, 2nd edition.
- Renooij, S., Parsons, S., and Pardieck, P. (2003). Using Kappas as Indicators of Strength in Qualitative Probabilistic Networks. In Nielsen, T. D. and Zhang, N. L., editors, ECSQARU 2003, volume 2711 of Lecture Notes in Computer Science, pages 87-99. Springer.
- Renooij, S. and van der Gaag, L. C. (2002). From Qualitative to Quantitative Probabilistic Networks. In Darwiche, A. and Friedman, N., editors, UAI 7802, pages 422-429. Morgan Kaufmann.
- Satur, R. and Liu, Z.-Q. (1999). A Contextual Fuzzy Cognitive Map Framework for Geographic Information Systems. IEEE Transactions on Fuzzy Systems, 7(5):481- 494.
- Sedki, K. and Bonneau de Beaufort, L. (2012). Cognitive Maps and Bayesian Networks for Knowledge Representation and Reasoning. In ICTAI 2012, pages 1035- 1040. IEEE.
- Song, H.-J., Shen, Z.-Q., Miao, C.-Y., Liu, Z.-Q., and Miao, Y. (2006). Probabilistic Fuzzy Cognitive Map. In FUZZ-IEEE 2006, pages 1221-1228. IEEE.
- Spirtes, P., Glymour, C., and Scheines, R. (2001). Causation, prediction, and search, volume 1. MIT Press.
- Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4):189-208.
- Wellman, M. P. (1990). Fundamental Concepts of Qualitative Probabilistic Networks. Artificial Intelligence, 44(3):257-303.
- Zhou, S., Zhang, J. Y., and Liu, Z.-Q. (2003). Quotient FCMs - A Decomposition Theory for Fuzzy Cognitive Maps. IEEE Transactions on Fuzzy Systems, 11(5):593-604.
Paper Citation
in Harvard Style
Le Dorze A., Duval B., Garcia L., Genest D., Leray P. and Loiseau S. (2014). Probabilistic Cognitive Maps - Semantics of a Cognitive Map when the Values are Assumed to be Probabilities . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-015-4, pages 52-62. DOI: 10.5220/0004757200520062
in Bibtex Style
@conference{icaart14,
author={Aymeric Le Dorze and Béatrice Duval and Laurent Garcia and David Genest and Philippe Leray and Stéphane Loiseau},
title={Probabilistic Cognitive Maps - Semantics of a Cognitive Map when the Values are Assumed to be Probabilities},
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2014},
pages={52-62},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004757200520062},
isbn={978-989-758-015-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Probabilistic Cognitive Maps - Semantics of a Cognitive Map when the Values are Assumed to be Probabilities
SN - 978-989-758-015-4
AU - Le Dorze A.
AU - Duval B.
AU - Garcia L.
AU - Genest D.
AU - Leray P.
AU - Loiseau S.
PY - 2014
SP - 52
EP - 62
DO - 10.5220/0004757200520062