nomically important use case would optimize costs. A
two-stage optimization process that first finds an opti-
mal solution and then tries to optimize soft constraint
violation based on constraint relationships (Schien-
dorfer et al., 2013) while staying within a predefined
range around the regional optimum is planned.
ACKNOWLEDGEMENTS
The authors thank Gerrit Anders for his valuable feed-
back. This research is partly sponsored by the re-
search unit “OC-Trust” (FOR 1085) of the German
research foundation (DFG).
REFERENCES
Abouelela, M. and El-Darieby, M. (2012). Multido-
main hierarchical resource allocation for grid applica-
tions. Journal of Electrical and Computer Engineer-
ing, 2012.
Anders, G., Siefert, F., Stegh
¨
ofer, J.-P., and Reif, W.
(2013a). Trust-based scenarios – predicting future
agent behavior in open self-organizing systems. In
Proc. of the 7th Int. Workshop on Self Organizing
Systems (IWSOS) 2013, Palma de Mallorca. Springer
Berlin Heidelberg.
Anders, G., Stegh
¨
ofer, J.-P., Siefert, F., and Reif, W.
(2013b). A Trust- and Cooperation-Based Solution of
a Dynamic Resource Allocation Problem. In 7th IEEE
International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), Philadelphia, PA. IEEE
Computer Society, Washington, D.C.
Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., and
Schieber, B. (2001). A Unified Approach to Approxi-
mating Resource Allocation and Scheduling. Journal
of the ACM (JACM), 48(5):1069–1090.
Boudjadar, A., David, A., Kim, J. H., Larsen, K. G., Miku-
cionis, M., Nyman, U., and Skou, A. (2013). Hierar-
chical scheduling framework based on compositional
analysis using uppaal. In Proceedings of FACS 2013,
Lecture Notes in Computer Science. Springer.
Boyle, P. (2007). Gaussian processes for regression and op-
timisation. PhD thesis, Victoria University of Welling-
ton.
Bremer, J., Rapp, B., and Sonnenschein, M. (2010). Sup-
port vector based encoding of distributed energy re-
sources’ feasible load spaces. In Innovative Smart
Grid Technologies Conference Europe (ISGT Europe),
pages 1–8. IEEE Power Society.
Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J.,
Lemaitre, M., Maudet, N., Padget, J., Phelps, S.,
Rodr
´
ıguez-Aguilar, J. A., and Sousa, P. (2006). Is-
sues in multiagent resource allocation. Informatica,
30(1):3 – 31.
Choueiry, B. Y., Faltings, B., and Noubir, G. (1994). Ab-
straction methods for resource allocation. Technical
report, Swiss Federal Institute of Technology in Lau-
sanne (EPFL).
CPLEX (2013). IBM ILOG CPLEX Optimizer. Online
Resource, last accessed December 2013: http://
www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/.
Deutsche Gesellschaft f
¨
ur Sonnenenergie e.V. (2013). En-
ergymap. Online Resource, last accessed December
2013: http://www.energymap.info/.
Frantz, F. (1995). A taxonomy of model abstraction tech-
niques. In Simulation Conference Proceedings, 1995.
Winter, pages 1413–1420.
Giunchiglia, F. and Walsh, T. (1992). A theory of abstrac-
tion. Artificial Intelligence, 57(2):323–389.
Heuck, K., Dettmann, K.-D., and Schulz, D. (2010). Elek-
trische Energieversorgung. Vieweg+Teubner. (in Ger-
man).
Hladik, P.-E., Cambazard, H., D
´
eplanche, A.-M., and
Jussien, N. (2008). Solving a real-time allocation
problem with constraint programming. Journal of Sys-
tems and Software, 81(1):132–149.
Kinnebrew, J. S. and Biswas, G. (2009). Efficient allocation
of hierarchically-decomposable tasks in a sensor web
contract net. In Proc. of the 2009 IEEE/WIC/ACM
Int. Joint Conference on Web Intelligence and Intel-
ligent Agent Technology – Volume 02, WI-IAT ’09,
pages 225–232, Washington, DC, USA. IEEE Com-
puter Society.
Lee, K. and Fishwick, P. A. (1996). A methodology for dy-
namic model abstraction. SCS Transactions on Simu-
lation, 13(4):217–229.
LEW Verteilnetz GmbH (2013). LEW Netzdaten. On-
line Resource, last accessed December 2013: http://
www.lew-verteilnetz.de/.
Meseguer, P., Rossi, F., and Schiex, T. (2006). Soft Con-
straints. In Rossi, F., van Beek, P., and Walsh, T.,
editors, Handbook of Constraint Programming, chap-
ter 9. Elsevier.
Pelikan, M. and Goldberg, D. E. (2000). Hierarchical prob-
lem solving by the bayesian optimization algorithm.
In Proc. of the Genetic and Evolutionary Computation
Conference 2000, pages 267–274. Morgan Kaufmann.
Ramchurn, S. D., Vytelingum, P., Rogers, A., and Jennings,
N. R. (2012). Putting the ’smarts’ into the smart grid:
a grand challenge for artificial intelligence. Commun.
ACM, 55(4):86–97.
Santos, C., Zhu, X., and Crowder, H. (2002). A mathemat-
ical optimization approach for resource allocation in
large scale data centers. Technical Report HPL-2002-
64, HP Labs.
Schiendorfer, A., Stegh
¨
ofer, J.-P., Knapp, A., Nafz, F., and
Reif, W. (2013). Constraint relationships for soft con-
straints. In Bramer, M. and Petridis, M., editors, Re-
search and Development in Intelligent Systems XXX.
Springer London.
Stegh
¨
ofer, J.-P., Anders, G., Siefert, F., and Reif, W.
(2013a). A system of systems approach to the evo-
lutionary transformation of power management sys-
tems. In Proceedings of INFORMATIK 2013 – Work-
shop on “Smart Grids”, Lecture Notes in Informatics.
Bonner K
¨
ollen Verlag.
ICAART2014-InternationalConferenceonAgentsandArtificialIntelligence
26