Functional Semantics for Non-prenex QBF
Igor Stéphan
2014
Abstract
Quantified Boolean Formulae (or QBF) are suitable to represent finite two-player games. Current techniques to solve QBF are for prenex QBF and knowledge representation is rarely in this form. We propose in this article a functional semantics for non-prenex QBF. The proposed formalism is symmetrical for validity and non-validity and allows to give different interpretations to the quantifiers. With our formalism, the solution of a non-prenex QBF is consistent with the specification, directly readable by the designer of the QBF and the locality of the knolewge is preserved.
References
- Benedetti, M. (2005a). Extracting Certificates from Quantified Boolean Formulas. In Proceedings of 9th International Joint Conference on Artificial Intelligence (IJCAI'05), pages 47-53.
- Benedetti, M. (2005b). Quantifier trees for QBFs. In Poster of the 8th International Conference on Theory and Applications of Satisfiability Testing (SAT'05).
- Bordeaux, L. and Monfroy, E. (2002). Beyond NP: ArcConsistency for Quantified Constraints. In Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming (CP'02), pages 371-386.
- Coste-Marquis, S., Fargier, H., Lang, J., Le Berre, D., and Marquis, P. (2006). Representing Policies for Quantified Boolean Formulae. In Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR'06), pages 286- 296.
- Da Mota, B., Stéphan, I., and Nicolas, P. (2009). Une nouvelle stratégie de mise sous forme prénexe pour des formules booléennes quantifiées avec bi-implications. Revue internationale I3 (Information - Interaction - Intelligence), 9:9-29.
- Egly, U., Seidl, M., Tompits, H., Woltran, S., and Zolda, M. (2003). Comparing Different Prenexing Strategies for Quantified Boolean Formulas. In Proceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT'03), pages 214- 228.
- Giunchiglia, E., Narizzano, M., and Tacchella, A. (2006). Quantifier structure in search based procedures for QBFs. In Proceedings of the conference on Design, Automation and Test in Europe (DATE'06), pages 812-817.
- Kleine Büning, H., Subramani, K., and Zhao, X. (2007). Boolean Functions as Models for Quantified Boolean Formulas. Journal of Automated Reasoning, 39(1):49-75.
- Lonsing, F. and Biere, A. (2010). Integrating Dependency Schemes in Search-Based QBF Solvers. In Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT'10), pages 158-171.
- Plaisted, D. and Greenbaum, S. (1986). A StructurePreserving Clause Form Translation. Journal of Symbolic Computation, 2(3):293-304.
- Stockmeyer, L. (1977). The polynomial-time hierarchy. Theoretical Computer Science, 3:1-22.
Paper Citation
in Harvard Style
Stéphan I. (2014). Functional Semantics for Non-prenex QBF . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-015-4, pages 358-365. DOI: 10.5220/0004760303580365
in Bibtex Style
@conference{icaart14,
author={Igor Stéphan},
title={Functional Semantics for Non-prenex QBF},
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2014},
pages={358-365},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004760303580365},
isbn={978-989-758-015-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Functional Semantics for Non-prenex QBF
SN - 978-989-758-015-4
AU - Stéphan I.
PY - 2014
SP - 358
EP - 365
DO - 10.5220/0004760303580365