Furthermore, we should test these two segmentation
methods on a larger and a complex database. And, we
think to evaluate the proposed methods on other cri-
teria such as the number of detecting segments or the
recognition rate for PAWs extraction. A comparison
to other developed method is also one of our perspec-
tives on the same databases.
REFERENCES
Abdulkader, A. Two-tier approach for arabic offline hand-
writing recognition. In IWFHR06, pages 65000T.1–
65000T.11.
Bennasri, A., Zahour, A., and Taconet, B. (1999). Extrac-
tion des lignes dun texte manuscrit arabe. In Vision
Interface99, pages 42–48.
Biswas, A., Bhowmick, P., and Bhattacharya, B. (2010).
Construction of isothetic covers of a digital object: A
combinatorial approach. Journal of Visual Communi-
cation and Image Representation, 21:295–310.
Bouafif, S. F., Snoussi, S. M., and Ellouze, N. (2006).
D
´
etection des lignes pr
´
e-imprim
´
ees de ch
`
eques ban-
caires tunisiens par la transformation de hough en vue
de l’extraction de l’
´
ecriture manuscrite. In S
´
eminaire
Automatique Industrie (SAI), pages 45–52.
Bouafif, S. F., Snoussi, S. M., and Ellouze, N. (2012). A
hybrid method for three segmentation level of hand-
written arabic script. IAJIT’12, 9(2):117–123.
Bukhari, S. S., F., S., and Breuel, T. M. (2009). Use of
the hough transformation to detect lines and curves in
pictures. In Communication of the ACM, pages 446–
450, Barcelona, Spain.
Duda, R. O. and Hart, P. E. (1972). Script-independent
handwritten textlines segmentation using active con-
tours. In ICDAR’72, pages 11–15.
Li, Y., Zheng, Y., Doermann, D., and Jaeger, S. (2008).
Script-independent text line segmentation in freestyle
handwritten documents. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 30(8):1313–
1329.
Malleron, V., Eglin, V., Emptoz, H., Dord-Crousl
´
e, S., and
R
´
egnier, P. (2009). Text lines and snippets extraction
for 19th century handwriting documents layout analy-
sis. In ICDAR’09, pages 1001–1005.
Miled, H., Cheriet, M., and Olivier, C. (1998). Multi-level
arabic handwritten words recognition. In The Interna-
tional Workshops on Advances in Pattern Recognition
(IAPR), pages 944–951, Sydney, Australia.
Nicolaou, A. and Gatos, B. (2009). Handwritten text line
segmentation by shredding text into its lines. In IC-
DAR’09, pages 626–630, Barcelona, Spain.
Ouwayed, N., and Belaid, A. (2012). A general approach
for multi-oriented text line extraction of handwritten
documents. IJDAR12, 15(4):297–314.
Sakar, A., Biswas, A., Bhowmick, P., and Bhattacharya,
B. (2010). Word segmentation and baseline detection
in handwritten documents using isothetic covers. In
ICFHR10, pages 445–450.
Sarfaz, M., Nawaz, S. N., and Al-Khuraidly, A. (2003). Off-
line arabic recognition system. In International con-
ference on geometric modeling and graphics, pages
30–35.
Snoussi, S. M. (2003). Mod
`
ele prespectif neuronal
`
a vision
globale-locale pour la reconnaissance de mots arabe
omni-scripteurs. PhD thesis, ENIT.
Snoussi, S. M., ElAbed, H., Bouafif, F. S., Bouriel, K., and
Ellouze, N. (2008). Baseline extraction : Comparison
of six methods on ifn/enit database. In ICFHR’08,
page 1170.
Zahour, A., Likforman-Sulem, L., Boussalaa, W., and
Taconet, B. (2007). Text line segmentation of histori-
cal arabic documents. In ICDAR’07, pages 138–142,
Curitiba, Paran, Brazil.
Zahour, A., Taconett, B., Likforman-Sulem, L., and Bous-
sellaa, W. (2008). Overlapping and multitouching
text-line segmentation by block covering analysis.
Pattern Analysis and Applications, 12(4):335–351.
ComparativeStudyofTwoSegmentationMethodsofHandwrittenArabicText-MM-OICandHT-MM
535