Automated Analysis of Collagen Histology in Ageing Skin

Osman S. Osman, Joanne L. Selway, Parvathy E. Harikumar, Sabah Jassim, Kenneth Langlands

2014

Abstract

Traditionally, expert analysis is required to evaluate pathological changes manifested in tissue biopsies. This is a highly-skilled process, notwithstanding issues of limited throughput and inter-operator variability, thus the application of image analysis algorithms to this domain may drive innovation in disease diagnostics. There are a number of problems facing the development of objective, unsupervised methods in morphometry that must be overcome. In the first instance, we decided to focus on one aspect of skin histopathology, that of collagen structure, as changes in collagen organisation have myriad pathological sequelae, including delayed wound healing and fibrosis. Methods to quantify incremental loss in structure are desirable, particularly as subclinical changes may be difficult to assess using existing criteria. For example, collagen structure is known to change with age, and through the calculation of foci distances in ellipses derived from the Fourier scatter, we were able to measure a decrease in collagen bundle thickness in picrosirius stained skin with age. Another key indicator of skin physiology is new collagen synthesis, which is necessary to maintain a healthy integument. To investigate this phenomenon, we developed a colour-based image segmentation method to discriminate newly-synthesised from established collagen revealed by Herovici’s polychrome staining. Our scheme is adaptive to variations in hue and intensity, and our use of K-means clustering and intensity-based colour filtering informed the segmentation and quantification of red (indicating old fibres) and blue pixels (indicating new fibres). This allowed the determination of the ratio of young to mature collagen fibres in the dermis, revealing an age-related reduction in new collagen synthesis. These automated colour and frequency domain methods are tractable to high-throughput analysis and are independent of operator variability.

References

  1. Al-Habian, A. Z., M. S.; Stocker, C. J.; Kepczynska, M. A.; Wargent, E. T.; Cawthorne, M. A.; Langlands, K 2011. Abstract: Increasing insulin resistance correlates with progressive skin damage in murine models of obesity and diabetes. Journal of Investigative Dermatology, 131, S34.
  2. Blanchet, G. & Charbit, M. 2010. Digital Signal and Image Processing Using MATLAB, Wiley.
  3. Cheikh, F. & Gabbouj, M. 1998. Directional Unsharp Masking-Based Approach for Color Image Enhancement. In: Marshall, S., Harvey, N. & Shah, D. (eds.) Noblesse Workshop on Non-Linear Model Based Image Analysis. Springer London.
  4. Cook, H. C. 1974. Manual of histological demonstration techniques, Boston, Butterworths.
  5. Farivar, R., Rebolledo, D., Chan, E. & Campbell, R. Year. A parallel implementation of k-means clustering on GPUs. In: Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), 2008. 340-345.
  6. Friend, W. G. 1963. A polychrome stain for differentiating precollagen from collagen. Stain Technology, 38, 204-206.
  7. Hosea, S. P., Ranichandra, S. & Rajagopal, T. 2011. Color Image Segmentation-An Approach. Color Image Segmentation-An Approach, 2.
  8. Humaimi, M. N., Razif, M. R. M. & Nagoor, M. T. A. 2001. Comparison between Median, Unsharp and Wiener filter and its effect on ultrasound stomach tissue image segmentation for Pyloric Stenosis. International Journal of Applied Science and Technology, 1, 218-226.
  9. Junqueira, L. C., Bignolas, G. & Brentani, R. R. 1979. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J, 11, 447-455.
  10. Mays, P. K., Mcanulty, R. J., Campa, J. S. & LAURENT, G. J. 1991. Age-related changes in collagen synthesis and degradation in rat tissues. Importance of degradation of newly synthesized collagen in regulating collagen production. Biochem J, 276 ( Pt 2), 307-313.
  11. Mcgibbon, D. 2006. Rook's Textbook of Dermatology, 7th edition. Clinical and Experimental Dermatology, 31, 178-179.
  12. Menesatti, P., Angelini, C., Pallottino, F., Antonucci, F., Aguzzi, J. & Costa, C. 2012. RGB color calibration for quantitative image analysis: the "3D thin-plate spline" warping approach. Sensors (Basel), 12, 7063- 7079.
  13. Muller-Rover, S., Handjiski, B., Van Der Veen, C., Eichmuller, S., Foitzik, K., Mckay, I. A., Stenn, K. S. & Paus, R. 2001. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol, 117, 3-15.
  14. Noorlander, M. L., Melis, P., Jonker, A. & Van Noorden, C. J. 2002. A quantitative method to determine the orientation of collagen fibers in the dermis. J Histochem Cytochem, 50, 1469-1474.
  15. Osman, O. S., Selway, J. L., Harikumar, P. E., Stocker, C. J., Wargent, E. T., Cawthorne, M. A., Jassim, S. & Langlands, K. 2013. A novel method to assess collagen architecture in skin. BMC Bioinformatics, 14, 260.
  16. Rawlins, J. M., Lam, W. L., Karoo, R. O., Naylor, I. L. & Sharpe, D. T. 2006. Quantifying collagen type in mature burn scars: a novel approach using histology and digital image analysis. J Burn Care Res, 27, 60- 65.
  17. Taher, L., Collette, N. M., Murugesh, D., Maxwell, E., Ovcharenko, I. & LOOTS, G. G. 2011. Global gene expression analysis of murine limb development. PLoS One, 6, e28358.
  18. Van Zuijlen, P. P., Ruurda, J. J., Van Veen, H. A., Van Marle, J., Van Trier, A. J., Groenevelt, F., KREIS, R. W. & Middelkoop, E. 2003. Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints. Burns, 29, 423-31.
  19. Varani, J., Dame, M. K., Rittie, L., Fligiel, S. E., Kang, S., Fisher, G. J. & Voorhees, J. J. 2006. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol, 168, 1861-1868.
  20. Varani, J., Warner, R. L., Gharaee-Kermani, M., Phan, S. H., Kang, S., Chung, J. H., Wang, Z. Q., Datta, S. C., Fisher, G. J. & Voorhees, J. J. 2000. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol, 114, 480-486.
  21. Verhaegen, P. D., Marle, J. V., Kuehne, A., Schouten, H. J., Gaffney, E. A., Maini, P. K., Middelkoop, E. & Zuijlen, P. P. 2012. Collagen bundle morphometry in skin and scar tissue: a novel distance mapping method provides superior measurements compared to Fourier analysis. J Microsc, 245, 82-89.
  22. Yano, K., Brown, L. F. & Detmar, M. 2001. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest, 107, 409-17.
  23. Yerpude, A. & Dubey, S. 2012. Colour image segmentation using K-Medoids Clustering. Int. J. Computer Techology & Applications, 152-154.
Download


Paper Citation


in Harvard Style

Osman O., Selway J., Harikumar P., Jassim S. and Langlands K. (2014). Automated Analysis of Collagen Histology in Ageing Skin . In Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014) ISBN 978-989-758-014-7, pages 41-48. DOI: 10.5220/0004786600410048


in Bibtex Style

@conference{bioimaging14,
author={Osman S. Osman and Joanne L. Selway and Parvathy E. Harikumar and Sabah Jassim and Kenneth Langlands},
title={Automated Analysis of Collagen Histology in Ageing Skin},
booktitle={Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014)},
year={2014},
pages={41-48},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004786600410048},
isbn={978-989-758-014-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014)
TI - Automated Analysis of Collagen Histology in Ageing Skin
SN - 978-989-758-014-7
AU - Osman O.
AU - Selway J.
AU - Harikumar P.
AU - Jassim S.
AU - Langlands K.
PY - 2014
SP - 41
EP - 48
DO - 10.5220/0004786600410048