REFERENCES
Aik, L. E. and Choon, T. W. (2011). Enhancing passive
stereo face recognition using pca and fuzzy c-means
clustering. International Journal of Video and Image
Processing and Network Security, 11(4):1–5.
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Ob-
jective Function Algorithms. Kluwer Academic Pub-
lishers, Norwell, MA, USA.
Bleyer, M. and Gelautz, M. (2004). A layered stereo algo-
rithm using image segmentation and global visibility
constraints. In Proceedings of the IEEE International
Conference on Image Processing, pages 2997–3000.
Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., and Chen,
T.-J. (2006). Fuzzy c-means clustering with spatial
information for image segmentation. Computerized
Medical Imaging and Graphics, 30(1):9 – 15.
Cox, I. J., Hingorani, S. L., Rao, S. B., and Maggs, B. M.
(1996). A maximum likelihood stereo algorithm.
Computer Vision and Image Understanding, 63:542–
567.
Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Pro-
cess and Its Use in Detecting Compact Well-Separated
Clusters. Journal of Cybernetics, 3(3):32–57.
Hirschm
¨
uller, H. (2005). Accurate and efficient stereo pro-
cessing by semi-global matching and mutual informa-
tion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 807–814.
Hirschm
¨
uller, H. (2006). Stereo vision in structured envi-
ronments by consistent semi-global matching. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 2, pages 2386–2393.
IEEE Computer Society.
Huang, J., Ng, M., Rong, H., and Li, Z. (2005). Automated
variable weighting in k-means type clustering. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 27(5):657–668.
Kim, J., Kolmogorov, V., and Zabih, R. (2003). Visual
Correspondence Using Energy Minimization and Mu-
tual Information. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, volume 2,
pages 1033–1040.
Klaus, A., Sormann, M., and Karner, K. F. (2006).
Segment-based stereo matching using belief propaga-
tion and a self-adapting dissimilarity measure. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 3, pages 15–18.
Liew, A. W. C., Leung, S. H., and Lau, W. H. (2000). Fuzzy
image clustering incorporating spatial continuity. In
IEEE Proceedings of the Vision, Image and Signal
Processing, volume 147, pages 185–192.
Liu, T., Zhang, P., and Luo, L. (2009). Dense stereo
correspondence with contrast context histogram,
segmentation-based two-pass aggregation and occlu-
sion handling. In Proceedings of the Pacific-Rim Sym-
posium on Image and Video Technology, pages 449–
461.
Meena, A. and Raja, R. (2013). Spatial fuzzy c means
pet image segmentation of neurodegenerative disor-
der. CoRR, abs/1303.0647.
Miyamoto, S., Ichihashi, H., and Honda, K. (2008). Al-
gorithms for Fuzzy Clustering: Methods in C-Means
Clustering with Applications. Studies in Fuzziness
and Soft Computing. Springer-Verlag.
Modha, D. and Spangler, S. (2003). Feature weighting in
k-means clustering. In Machine Learning, volume 52,
pages 217–237.
Ntalianis, K. S., Doulamis, A., Doulamis, N., and Kollias,
S. (2002). Unsupervised segmentation of stereoscopic
video objects: investigation of two depth-based ap-
proaches. In Proceedings of the 14th International
Conference of Digital Signal Processing, 2002, vol-
ume 2, pages 693–696.
Pal, N. and Bezdek, J. (1995). On cluster validity for the
fuzzy c-means model. IEEE Transactions on Fuzzy
Systems, 3(3):370–379.
Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International Journal of Computer Vision,
47(1-3):7–42.
Szeliski, R. and Zabih, R. (2000). An experimental compar-
ison of stereo algorithms. In Proceedings of the Inter-
national Workshop on Vision Algorithms: Theory and
Practice, pages 1–19.
Taguchi, Y., Wilburn, B., and Zitnick, C. L. (2008). Stereo
reconstruction with mixed pixels using adaptive over-
segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
1–8.
Tao, H., Sawhney, H. S., and Kumar, R. (2001). A global
matching framework for stereo computation. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 532–539.
Tombari, F., Mattoccia, S., and di Stefano, L. (2007).
Segmentation-based adaptive support for accurate
stereo correspondence. In Proceedings of the Pacific-
Rim Symposium on Image and Video Technology,
pages 427–438.
Zitnick, C. L. and Kang, S. B. (2007). Stereo for image-
based rendering using image over-segmentation. In-
ternational Journal of Computer Vision, 75(1):49–65.
ModifiedFuzzyC-MeansasaStereoSegmentationMethod
47