Miniaturized Antenna Array with Low Correlation for Telemedicine and Body Area Networks Applications

Haider Khaleel, Chitranjan Singh, Hussain Al-Rizzo, Seshadri Mohan

2014

Abstract

The gain from Multiple-Input Multiple-Output (MIMO) techniques in wireless sensor networks equipped with miniaturized sensor nodes cannot be fully exploited due to the difficulty encountered when placing traditional multiple antennas with sub-wavelength physical separation. This paper presents a novel antenna array design using µ-negative metamaterial (MNG) structures that lead to low correlation between antennas when placed closely on a user’s body utilizing a telemedicine or a Body Area Network based system. The obtained correlation coefficient of 0.04 is low enough for realizing full diversity gain from using such antenna array on sensor nodes in a telemedicine WLAN environment. Furthermore, Bit Error Rate (BER) simulation result for a 2×2 Alamouti diversity scheme in an IEEE 802.11a system is also presented. Design and simulations are conducted using CST Microwave Studio which is based on the Finite Integration Technique. Results suggest that the proposed design would be a suitable candidate for telemedicine and BAN applications that are constrained by limited space.

References

  1. Fong, B.; Ansari, N.; Fong, A.C.M., "Prognostics and health management for wireless telemedicine networks," Wireless Communications, IEEE , vol.19, no.5, pp.83,89, Oct. 2012.
  2. Algaet, M. A.; Bin Muhamad Noh, Z. A.; Shibghatullah, A.S.; Milad, A.A., "Provisioning quality of service of wireless telemedicine for e-health services, " Information & Communication Technologies (ICT), 2013 IEEE Conference on , vol., no., pp.199,202, 11- 12 April 2013.
  3. Khaleel, H. R.; Al-Rizzo, H. M.; Rucker, D. G.; Elwi, T. A., "Wearable Yagi microstrip antenna for telemedicine applications," Radio and Wireless Symposium (RWS), 2010 IEEE , vol., no., pp.280,283, 10-14 Jan. 2010.
  4. Haga, N.; Saito, K.; Takahashi, M.; Ito, K.; "Characteristics of Cavity Slot Antenna for Body-Area Networks," Antennas and Propagation, IEEE Transactions on, vol.57, no.4, pp.837-843, April 2009.
  5. W. S. T. Rowe and R. B.Waterhouse, “Reduction of backward radiation for CPW fed aperture stacked patch antennas on small ground planes,” IEEE Trans. Antennas Propag., vol. 51, no. 6, Jun. 2003.
  6. S. D. Targonski and D. M. Pozar, “Aperture-coupled microstrip antennas using reflector elements for wireless communications,” in Proc. IEEE-APS Conf. Antennas and Propagation for Wireless Communications, Nov. 1998, pp. 163-166.
  7. B. Sanz-Izquierdo and J. C. Batchelor, “WLAN Jacket Mounted Antenna”, Antenna Technology: Small and Smart Antennas Metamaterials and Applications ,pp. 57-60, June 2007.
  8. M. T. Islam , M. R. I. Faruque, N. Misran, “ Reduction of Specific Absorption Rate (SAR) in the Human Head With Ferrite Material and Metamaterial” Progress In Electromagnetics Research C, Vol. 9, 4758, 2009.
  9. H. Raad, A. Abbosh, H. Al-Rizzo, D. Rucker, "Flexible and Compact AMC Based Antenna for Telemedicine Applications," Antennas and Propagation, IEEE Transactions on , vol.PP, no.99, pp.1, 0, 2013.
  10. H. R. Khaleel, H. Al-Rizzo, D. Rucker, Y. Al-Naiemy, "Flexible printed monopole antennas for WLAN applications," Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on , vol., no., pp.1334-1337, 3-8 July 2011.
  11. H.-T. Chou, H.-C. Cheng, H.-T. Hsu, and L.-R. Kuo, “ Investigation of Isolation Improvement Techniques for MIMO WLAN Portable Terminal applications”, Progress In Electromagnetics Research, PIER 85, 349-366, 2008.
  12. A. A. Abouda and S. G. Haggman, “Effect of Mutual Coupling on Capacity of MIMO Wireless Channels in High SNR Scenario”, Progress In Electromagnetics Research, PIER 65, 27-40, 2006.
  13. S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
  14. D. shan Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Commun, vol. 48, pp. 502-513, 2000.
  15. H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2636-2647, 2003.
  16. J. W. Wallace and M. A. Jensen, “Mutual coupling in mimo wireless systems: a rigorous network theory analysis,” IEEE Transactions on Wireless Communications, vol. 3, no. 4, pp. 1317-1325, 2004.
  17. P. Kyritsi, D. Cox, R. Valenzuela, and P. Wolniansky, “Correlation analysis based on mimo channel measurements in an indoor environment,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 713-720, 2003.
  18. S. Caban and M. Rupp, “Impact of transmit antenna spacing on 2x1 alamouti radio transmission,” Electronics Letters, vol. 43, no. 4, pp. 198-199, 2007.
  19. Ikeuchi, R.; Hirata, A., "Dipole Antenna Above EBG Substrate for Local SAR Reduction," Antennas and Wireless Propagation Letters, IEEE, vol.10, no., pp.904, 906, 2011.
  20. C. Caloz, H. Okabe, T. Iwai, and T. Itoh, “A simple and accurate model for microstrip structures with slotted ground plane,” IEEE Microwave Wireless Comp. Lett., vol. 14, no. 4, pp. 133-135, Apr. 2004.
  21. M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for mimo applications,” IEEE Trans. Antennas Propag., vol. 58, no. 9, pp. 2894-2902, Sept. 2010.
  22. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2075-2084, Nov. 1999.
  23. (2010, Apr.) CST microwave studio. [Online]. Available:http://www.cst.com/Content/Products/MWS /Overview.aspx.
  24. S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electronics Letters, p. 705707, May 2003.
  25. H. R. Khaleel, H. Al-Rizzo, D. Rucker, "Compact Polyimide-Based Antennas for Flexible Displays," IEEE Display Technology, Journal of, vol.8, no.2, pp.91-97, Feb. 2012.
  26. H. R. Khaleel, H. Al-Rizzo, D. Rucker, S. Mohan, "A Compact Polyimide-Based UWB Antenna for Flexible Electronics," Antennas and Wireless Propagation Letters, IEEE , vol.11, no., pp.564-567, 2012.
Download


Paper Citation


in Harvard Style

Khaleel H., Singh C., Al-Rizzo H. and Mohan S. (2014). Miniaturized Antenna Array with Low Correlation for Telemedicine and Body Area Networks Applications . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014) ISBN 978-989-758-013-0, pages 39-44. DOI: 10.5220/0004799000390044


in Bibtex Style

@conference{biodevices14,
author={Haider Khaleel and Chitranjan Singh and Hussain Al-Rizzo and Seshadri Mohan},
title={Miniaturized Antenna Array with Low Correlation for Telemedicine and Body Area Networks Applications},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)},
year={2014},
pages={39-44},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004799000390044},
isbn={978-989-758-013-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)
TI - Miniaturized Antenna Array with Low Correlation for Telemedicine and Body Area Networks Applications
SN - 978-989-758-013-0
AU - Khaleel H.
AU - Singh C.
AU - Al-Rizzo H.
AU - Mohan S.
PY - 2014
SP - 39
EP - 44
DO - 10.5220/0004799000390044