ENB/114606/2009 and PTDC/EEI-SII/2312/2012.
Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database.
REFERENCES
Arbel´aez, P., Maire, M., Fowlkes, C., and Malik, J. (2011).
Contour detection and hierarchical image segmenta-
tion. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 33(5):898–916.
Association, A. (2013). 2013 Alzheimer’s disease facts and
figures. Alzheimer’s & Dementia: The Journal of the
Alzheimer’s Association, 9(2):208–245.
Beucher, S. and Lantuejoul, C. (1979). Use of watersheds in
contour detection. In Int. Work. on Image Processing:
Real-time Edge and Motion Detection/Estimation.
Bicacro, E., Silveira, M., Marques, J. S., and Costa, D. C.
(2012). 3D image-based diagnosis of Alzheimer’s dis-
ease: bringing medical vision into feature selection. In
Int. Symp. on Biomedical Imaging, pages 134–137.
Chaves, R., Ramirez, J., Gorriz, J. M., Lopez, M., Alvarez,
I., Salas-Gonzalez, D., Segovia, F., and Padilla, P.
(2009). SPECT image classification based on NMSE
feature correlation weighting and SVM. In IEEE Nu-
clear Science Symp. Conf. Record, pages 2715–2710.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20:273–297.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Int. Conf. on
Knowledge Discovery and Data Mining, pages 226–
231.
Fan, Y., Batmanghelich, N., Clark, C., and Davatzikos, C.
(2008). Spatial patterns of brain atrophy in MCI pa-
tients, identified via high-dimensional pattern classi-
fication, predict subsequent cognitive decline. Neu-
roImage, 39:1731–1743.
Gerardin, E., Ch´etelat, G., Chupin, M., Cuingnet, R., Des-
granges, B., Kim, H.-S., Niethammer, M., Dubois, B.,
Leh´ericy, S., Garnero, L., Eustache, F., and Colliot, O.
(2009). Multidimensional classification of hippocam-
pal shape features discriminates Alzheimer’s disease
and mild cognitive impairment from normal aging.
NeuroImage, 47(4):1476–1486.
Lopez, M., Ramirez, J., Gorriz, J. M., Salas-Gonzalez, D.,
Alvarez, I., Segovia, F., and Chaves, R. (2009). Multi-
variate approaches for Alzheimer’s disease diagnosis
using bayesian classifiers. In IEEE Nuclear Science
Symp. Conf. Record, pages 3190–3193.
Mikhno, A., Nuevo, P. M., Devanand, D. P., Parsey, R. V.,
and Laine, A. F. (2012). Multimodal classification
of dementia using functional data, anatomical features
and 3D invariant shape descriptors. In Int. Symp. on
Biomedical Imaging, pages 606–609.
Morgado, P., Silveira, M., and Marques, J. S. (2013). Effi-
cient selection of non-redundant features for the diag-
nosis of Alzheimer’s disease. In Int. Symp. on Biomed-
ical Imaging, pages 640–643.
Ram´ırez, J., G´orriz, J. M., Salas-Gonzalez, D., Romero,
A., L´opez, M.,
´
Alvarez, I., and G´omez-R´ıo, M.
(2013). Computer-aided diagnosis of Alzheimer’s
type dementia combining support vector machines
and discriminant set of features. Information Sciences,
237:59–72.
Segovia, F., G´orriz, J. M., Ram´ırez, J., Salas-Gonzalez, D.,
´
Alvarez, I., L´opez, M., and Chaves, R. (2012). A
comparative study of feature extraction methods for
the diagnosis of Alzheimer’s disease using the ADNI
database. Neurocomputing, 75:64–71.
Silveira, M. and Marques, J. S. (2010). Boosting Alzheimer
disease diagnosis using PET images. In Int. Conf. on
Pattern Recognition, pages 2556–2559.
Tran, T. N., Nguyen, T. T., Willemsz, T. A., van Kessel,
G., Frijlink, H. W., and van der Voort Maarschalk, K.
(2012). A density-based segmentation for 3D images,
an application for X-ray micro-tomography. Analytica
Chimica Acta, 725:14–21.
Tripathi, S., Kumar, K., Singh, B. K., and Singh, R. P.
(2012). Image segmentation: a review. Int. Jour-
nal of Computer Science and Management Research,
1(4):838–843.
Varma, S. and Simon, R. (2006). Bias in error estimation
when using cross-validation for model selection. BMC
Bioinformatics, 7(91).
Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov,
V., Raghavan, N., Novak, G., DiBernardo, A., and
Narayan, V. (2012). Sparse learning and stability se-
lection for predicting MCI to AD conversion using
baseline ADNI data. BMC Neurology, 12(46).
Zhang, D., Wang, Y., Zhou, L., Yuan, H., and Shen, D.
(2011). Multimodal classification of Alzheimer’s dis-
ease and mild cognitive impairment. NeuroImage,
55(3):856–867.
BIOIMAGING2014-InternationalConferenceonBioimaging
18