Chen, C. H., Pau, L. F., and Wang, P. (1998). Texture analysis
in the handbook of pattern recognition and computer
vision. World Scientific, second edition.
Coustaty, M., Pareti, R., Vincent, N., and Ogier, J. M. (2011).
Towards historical document indexing: extraction of
drop cap letters. IJDAR, pages 243–254.
Ding, K., Liu, Z., Jin, L., and Zhu, X. (2007). A compar-
ative study of Gabor feature and gradient feature for
handwritten chinese character recognition. In WAPR,
pages 1182–1186.
Fowlkes, E. B. and Mallows, C. L. (1983). A method for
comparing two hierarchical clusterings. JASA, pages
553–569.
Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973).
Textural features for image classification. SMC, pages
610–621.
Howarth, P. and Ruger, S. (2004). Evaluation of texture
features for content-based image retrieval. IVR, pages
326–334.
Jain, A. K. and Zhong, Y. (1996). Page segmentation using
texture analysis. PR, pages 743–770.
Journet, N., Ramel, J., Mullot, R., and Eglin, V. (2008). Doc-
ument image characterization using a multiresolution
analysis of the texture: application to old documents.
IJDAR, pages 9–18.
Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in
data: an introduction to cluster analysis. John Wiley
& Sons.
Ketchen, D. J. and Shook, C. L. (1996). The application of
cluster analysis in strategic management research: an
analysis and critique. SMJ, pages 441–458.
Knuth, D. E. (1997). The art of computer programming,
volume 3: (2nd ed.) sorting and searching. Addison
Wesley Longman Publishing Co.
Kricha, A. and Amara, N. E. B. (2011). Exploring textural
analysis for historical documents characterization. JC,
pages 24–30.
Lance, G. N. and Williams, W. T. (1967). A general theory of
classificatory sorting strategies 1. Hierarchical systems.
CJ, pages 373–380.
Lin, M., Tapamo, J., and Ndovie, B. (2006). A texture-based
method for document segmentation and classification.
SACJ, pages 49–56.
Liu, C. L., Koga, M., and Fujisawa, H. (2005). Gabor feature
extraction for character recognition: comparison with
gradient feature. In ICDAR, pages 121–125.
MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In MSP,
pages 281–297.
Mahalanobis, P. (1936). On the generalised distance in
statistics. In NISI, pages 49–55.
Makhoul, J., Kubala, F., Schwartz, R., and Weischedel, R.
(1999). Performance measures for information extrac-
tion. In DARPA, pages 249–252.
Mao, S., Rosenfeld, A., and Kanungo, T. (2003). Document
structure analysis algorithms: a literature survey. In
DRR, pages 197–207.
Mehri, M., Gomez-Kr
¨
amer, P., H
´
eroux, P., Boucher, A.,
and Mullot, R. (2013a). Texture feature evaluation for
segmentation of historical document images. In HIP,
pages 102–109.
Mehri, M., Gomez-Kr
¨
amer, P., H
´
eroux, P., and Mullot, R.
(2013b). Old document image segmentation using the
autocorrelation function and multiresolution analysis.
In DRR.
Mehri, M., H
´
eroux, P., Gomez-Kr
¨
amer, P., and Mullot, R.
(2013c). A pixel labeling approach for historical digi-
tized books. In ICDAR, pages 817–821.
Mikkilineni, A. K., Chiang, P. J., Ali, G. N., Chiu, G. T. C.,
Allebach, J. P., and III, E. J. D. (2005). Printer identi-
fication based on graylevel co-occurrence features for
security and forensic applications. In SSWMC, pages
430–440.
Monti, S., Tamayo, P., Mesirov, J., and Golub, T. (2003).
Consensus Clustering: a resampling-based method for
class discovery and visualization of gene expression
microarray data. ML, pages 91–118.
Mullot, R. (2006). Les documents
´
ecrits : De la num
´
erisation
`
a l’indexation par le contenu. Herm
`
es.
Nguyen, G., Coustaty, M., and Ogier, J. M. (2010). Stroke
feature extraction for lettrine indexing. In IPTA, pages
355–360.
Ouji, A., Leydier, Y., and Bourgeois, F. L. (2011). Chromatic
/ achromatic separation in noisy document images. In
ICDAR, pages 167–171.
Payne, J. S., Stonham, T. J., and Patel, D. (1994). Document
segmentation using texture analysis. In ICPR, pages
380–382.
Peake, G. and Tan, T. (1997). Script and language identifica-
tion from document images. In DIA, pages 10–17.
Petrou, M. and Sevilla, P. G. (2006). Image processing:
dealing with texture. John Wiley & Sons.
Said, H. E. S., Tan, T. N., and Baker, K. D. (2000). Personal
identification based on handwriting. PR, pages 149–
160.
Saxena, P. C. and Navaneetham, K. (1991). The effect of
cluster size, dimensionality, and number of clusters
on recovery of true cluster structure through Chernoff-
type faces. RSS, pages 415–425.
Simpson, T., Armstrong, J., and Jarman, A. (2010). Merged
consensus clustering to assess and improve class dis-
covery with microarray data. BMC, pages 1471–1482.
Uttama, S., Loonis, P., Delalandre, M., and Ogier, J. M.
(2006). Segmentation and retrieval of ancient graphic
documents. In GREC, pages 88–98.
Zhu, Y., Tan, T., and Wang, Y. (2001). Font recognition
based on global texture analysis. PAMI, pages 1192–
1200.
ICPRAM2014-InternationalConferenceonPatternRecognitionApplicationsandMethods
560