Scalability Analysis of mRMR for Microarray Data

Diego Rego-Fernández, Verónica Bolón-Canedo, Amparo Alonso-Betanzos

2014

Abstract

Lately, derived from the Big Data problem, researchers in Machine Learning became also interested not only in accuracy, but also in scalability. Although scalability of learning methods is a trending issue, scalability of feature selection methods has not received the same amount of attention. In this research, an attempt to study scalability of both Feature Selection and Machine Learning on microarray datasets will be done. For this sake, the minimum redundancy maximum relevance (mRMR) filter method has been chosen, since it claims to be very adequate for this type of datasets. Three synthetic databases which reflect the problematics of microarray will be evaluated with new measures, based not only in an accurate selection but also in execution time. The results obtained are presented and discussed.

References

  1. Belanche, L. and González, F. (2011). Review and evaluation of feature selection algorithms in synthetic problems. arXiv preprint arXiv:1101.2320.
  2. Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1987). Occam's razor. Information processing letters, 24(6):377-380.
  3. Bolón-Canedo, V., Sánchez-Maron˜o, N., and AlonsoBetanzos, A. (2013). A review of feature selection methods on synthetic data. Knowledge and information systems, 34(3):483-519.
  4. Díaz-Uriarte, R. and De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC bioinformatics, 7(1):3.
  5. El Akadi, A., Amine, A., El Ouardighi, A., and Aboutajdine, D. (2011). A two-stage gene selection scheme utilizing mRMR filter and ga wrapper. Knowledge and Information Systems, 26(3):487-500.
  6. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439):531-537.
  7. Guyon, I. (2006). Feature extraction: foundations and applications, volume 207. Springer.
  8. Jain, A. and Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(2):153-158.
  9. Mundra, P. A. and Rajapakse, J. C. (2010). Svm-rfe with mrmr filter for gene selection. NanoBioscience, IEEE Transactions on, 9(1):31-37.
  10. Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1226-1238.
  11. Saeys, Y., Inza, I., and Larran˜aga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):2507-2517.
  12. Sonnenburg, S., Franc, V., Yom-Tov, E., and Sebag, M. (2008). Pascal large scale learning challenge. In 25th International Conference on Machine Learning (ICML2008) Workshop. J. Mach. Learn. Res, volume 10, pages 1937-1953.
  13. Zhang, M.-L., Pen˜a, J. M., and Robles, V. (2009). Feature selection for multi-label naive bayes classification. Information Sciences, 179(19):3218-3229.
  14. Zhang, Y., Ding, C., and Li, T. (2008). Gene selection algorithm by combining ReliefF and mRMR. BMC genomics, 9(Suppl 2):S27.
  15. Zhu, Z., Ong, Y.-S., and Zurada, J. M. (2010). Identification of full and partial class relevant genes. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 7(2):263-277.
Download


Paper Citation


in Harvard Style

Rego-Fernández D., Bolón-Canedo V. and Alonso-Betanzos A. (2014). Scalability Analysis of mRMR for Microarray Data . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-015-4, pages 380-386. DOI: 10.5220/0004807703800386


in Bibtex Style

@conference{icaart14,
author={Diego Rego-Fernández and Verónica Bolón-Canedo and Amparo Alonso-Betanzos},
title={Scalability Analysis of mRMR for Microarray Data},
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2014},
pages={380-386},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004807703800386},
isbn={978-989-758-015-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Scalability Analysis of mRMR for Microarray Data
SN - 978-989-758-015-4
AU - Rego-Fernández D.
AU - Bolón-Canedo V.
AU - Alonso-Betanzos A.
PY - 2014
SP - 380
EP - 386
DO - 10.5220/0004807703800386