Figure 11: Evolution of the test error according to the number of learning examples used to build the machine filter.
We plan to make numerous improvements in our
work. We are currently working on a method allow-
ing the user to more easily select suitable shapes for
concept matching. Moreover, we hope to run directly
our algorithms to retrieve uncertain shapes.
REFERENCES
Bach, F., Lanckriet, G. R. G., and Jordan, M. I. (2004).
Multiple kernel learning, conic duality, and the smo
algorithm. In Proceedings of the twenty-first inter-
national conference on Machine learning, ICML ’04,
New York, NY, USA. ACM.
Barra, V. and Biasotti, S. (2013). 3d shape retrieval using
kernels on extended reeb graphs. Pattern Recognition.
Biasotti, S., Floriani, L. D., Falcidieno, B., Frosini, P.,
Giorgi, D., Landi, C., L.Papaleo, and Spagnuolo, M.
(2008). Describing shapes by geometrical-topological
properties of real functions. Computing Surveys,
40(4). In: Computing Surveys, vol. 40 (4) ACM,
2008.
Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V.
(2011). Probabilistic reasoning for assembly-based
3d modeling. ACM Transactions on Graphics (Proc.
SIGGRAPH), 30(4).
Eitz, M., Hays, J., and Alexa, M. (2012). How do humans
sketch objects? ACM Transactions on Graphics (Pro-
ceedings SIGGRAPH), 31(4):44:1–44:10.
Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer,
W., Tal, A., Rusinkiewicz, S., and Dobkin, D. (2004).
Modeling by example. ACM Transactions on Graph-
ics (Proc. SIGGRAPH).
Giorgi, D., Biasotti, S., and Paraboschi, L. (2007). Water-
tight models track. Research report, IMATI, Genova,
Italy.
Giorgi, D., Frosini, P., Spagnuolo, M., and Falcidieno, B.
(2010). 3d relevance feedback via multilevel rele-
vance judgements. Vis. Comput., 26(10):1321–1338.
Han, D., W., and Li, Z. (2008). Semantic image classi-
fication using statistical local spatial relations model.
Multimedia Tools and Applications, 39(2):169–188.
Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V.
(2012). A probabilistic model of component-based
shape synthesis. ACM Transactions on Graphics,
31(4).
Khan, S. S. and Madden, M. G. (2009). A survey of recent
trends in one class classification. In Artificial Intelli-
gence and Cognitive Science, pages 181–190.
Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui,
L. E., and Jordan, M. I. (2004). Learning the ker-
nel matrix with semidefinite programming. Journal of
Machine Learning Research, 5:27–72.
Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet,
Y. (2008). Simplemkl. Journal of Machine Learning
Research.
Schlkopf, B. and Smola, A. J. (2001). Learning with Ker-
nels: Support Vector Machines, Regularization, Opti-
mization, and Beyond. MIT Press, Cambridge, MA,
USA.
Sonnenburg, S., Rtsch, G., Schfer, C., and Schlkopf, B.
(2006). Large scale multiple kernel learning. Jour-
nal of Machine Learning Research, 7:1531–1565.
Tangelder, J. W. H. and Veltkamp, R. C. (2008). A survey of
content based 3d shape retrieval methods. Multimedia
Tools and Applications, 39(3):441–471.
Tax, D. M. J. and Duin, R. P. W. (2004). Support vector data
description. Machine Learning, 54(1):45–66.
Zhang, Z. and Jin, J. (2010). Fuzzy relevance feedback in
content-based 3d model retrieval. In Proceedings of
the seventh international conference on Fuzzy Systems
and Knowledge Discovery, pages 565–568.
3DShapeRetrievalusingUncertainSemanticQuery-APreliminaryStudy
607