5 CONCLUSIONS & FUTURE
WORK
In this work we proposed a multi-pedestrian tracking
frameworkachievingexcellent accuracy and speed re-
sults on a single-core CPU implementation. The al-
gorithm is based on our novel perspective warping
window approach. We proposed this approach to al-
low for efficient pedestrian detection on the challeng-
ing, highly distorted camera images from a blind-spot
camera, with minimal CPU resources. However, this
approach is easily generalisable to other applications
with non-standard camera-viewpoints.
In the future we plan to further extend our framework
to multi-class detection: we aim to develop a com-
plete vulnerable road users detection system, starting
with bicyclists. Furthermore we aim to investigate
if the inclusion of other features (e.g. motion infor-
mation) could further increase the robustness of our
framework.
REFERENCES
Benenson, R., Markus, M., Tuytelaars, T., and Van Gool, L.
(2013). Seeking the strongest rigid detector. In Pro-
ceedings of CVPR, pages 3666–3673, Portland, Ore-
gon.
Benenson, R., Mathias, M., Timofte, R., and Van Gool, L.
(2012a). Fast stixels computation for fast pedestrian
detection. In ECCV, CVVT workshop, pages 11–20.
Benenson, R., Mathias, M., Timofte, R., and Van Gool, L.
(2012b). Pedestrian detection at 100 frames per sec-
ond. In Proceedings of CVPR, pages 2903–2910.
Cho, H., Rybski, P., Bar-Hillel, A., and Zhang, W. (2012).
Real-time pedestrian detection with deformable part
models. In IEEE Intelligent Vehicles Symposium,
pages 1035–1042.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In Proceedings of CVPR,
volume 2, pages 886–893.
Doll´ar, P., Belongie, S., and Perona, P. (2010). The fastest
pedestrian detector in the west. In Proceedings of
BMVC, pages 68.1–68.11.
Doll´ar, P., Tu, Z., Perona, P., and Belongie, S. (2009a). Inte-
gral channel features. In Proceedings of BMVC, pages
91.1–91.11.
Doll´ar, P., Wojek, C., Schiele, B., and Perona, P. (2009b).
Pedestrian detection: A benchmark. In Proceedings
of CVPR, pages 304–311.
Doll´ar, P., Wojek, C., Schiele, B., and Perona, P. (2012).
Pedestrian detection: An evaluation of the state of the
art. In IEEE PAMI, 34:743–761.
Enzweiler, M. and Gavrila, D. M.(2009). Monocular pedes-
trian detection: Survey and experiments. In IEEE
PAMI, volume 31, pages 2179–2195.
Ess, A., Leibe, B., Schindler, K., and Van Gool, L. (2008).
A mobile vision system for robust multi-person track-
ing. In Proceedings of CVPR, pages 1–8.
EU (22 february 2006). Commision of the european com-
munities, european road safety action programme:
mid-term review.
Felzenszwalb, P., Girschick, R., and McAllester, D. (2010).
Cascade object detection with deformable part mod-
els. In Proceedings of CVPR, pages 2241–2248.
Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008).
A discriminatively trained, multiscale, deformable
part model. In Proceedings of CVPR.
Gavrila, D. and Munder, S. (2007). Multi-cue pedestrian de-
tection and tracking from a moving vehicle. In IJCV,
volume 73, pages 41–59.
Huang, C., Ai, H., Li, Y., and Lao, S. (2005). Vector boost-
ing for rotation invariant multi-view face detection. In
ICCV, pages 446–453.
Lampert, C., Blaschko, M., and Hoffmann, T. (2009). Effi-
cient subwindow search: A branch and bound frame-
work for object localization. In IEEE PAMI, vol-
ume 31, pages 2129–2142.
Martensen, H. (2009). Themarapport vracht-
wagenongevallen 2000 - 2007 (BIVV).
Mathias, M., Timofte, R., Benenson, R., and Van Gool, L.
(2013). Traffic sign recognition - how far are we from
the solution? In ICJNN.
Pedersoli, M., Gonzalez, J., Hu, X., and Roca, X. (2013).
Toward real-time pedestrian detection based on a de-
formable template model. In IEEE ITS.
Prisacariu, V. and Reid, I. (2009). fastHOG - a real-time
gpu implementation of HOG. Technical report, De-
partment of Engineering Science, Oxford University.
Seitner, F. and Hanbury, A. (2006). Fast pedestrian tracking
based on spatial features and colour. In Proceedings
of CVWW, pages 105–110.
Van Beeck, K., Goedem´e, T., and Tuytelaars, T. (2011). To-
wards an automatic blind spot camera: Robust real-
time pedestrian tracking from a moving camera. In
Proceedings of MVA, Nara, Japan.
Van Beeck, K., Tuytelaars, T., and Goedem´e, T. (2012). A
warping window approach to real-time vision-based
pedestrian detection in a truck’s blind spot zone. In
Proceedings of ICINCO.
Viola, P., Jones, M., and Snow, D. (2005). Detecting pedes-
trians using patterns of motion and appearance. In
IJCV, volume 63, pages 153–161.
ICPRAM2014-InternationalConferenceonPatternRecognitionApplicationsandMethods
420