204 of Advances in Intelligent Systems and Comput-
ing, pages 109–120. Springer Berlin Heidelberg.
dos Angelos, E., Saavedra, O., Corts, O., and De Souza,
A. (2011). Detection and identification of abnormal-
ities in customer consumptions in power distribution
systems.
Filho, J. R., Gontijo, E. M., Delaiba, A. C., Mazina, E.,
Cabral, J. E., and Pinto, J. O. P. (2004). Fraud identi-
fication in electricity company customers using deci-
sion tree.
Galvn, J., Elices, E., Noz, A. M., Czernichow, T., and Sanz-
Bobi, M. (1998). System for detection of abnormali-
ties and fraud in customer consumption.
Garcia, V., Sanchez, J., and Mollineda, R. (2012). On the
suitability if numerical performance evaluation mea-
sures for class imbalance problems. 1st International
Conference In Pattern Recognition Aplications and
Methods, pages 310–313, volumen 2.
Jiang, R., Tagaris, H., and Laschusz, A. (2002). Wavelets
based feature extraction and multiple classifiers for
electricity fraud detection.
Leon, C., Biscarri, F. X. E. L., Monedero, I. X. F. I., Guer-
rero, J. I., Biscarri, J. X. F. S., and Millan, R. X. E. O.
(2011). Variability and trend-based generalized rule
induction model to ntl detection in power companies.
Lo, Y.-L., Huang, S.-C., and Lu, C.-N. (2012). Non-
technical loss detection using smart distribution net-
work measurement data. In Innovative Smart Grid
Technologies - Asia (ISGT Asia), 2012 IEEE, pages
1–5.
Markoc, Z., Hlupic, N., and Basch, D. (2011). Detection of
suspicious patterns of energy consumption using neu-
ral network trained by generated samples.
Monedero, I., Biscarri, F., Len, C., Guerrero, J., Biscarri,
J., and Milln, R. (2010). Using regression analysis
to identify patterns of non-technical losses on power
utilities. In Setchi, R., Jordanov, I., Howlett, R., and
Jain, L., editors, Knowledge-Based and Intelligent In-
formation and Engineering Systems, volume 6276 of
Lecture Notes in Computer Science, pages 410–419.
Springer Berlin Heidelberg.
Muniz, C., Vellasco, M., Tanscheit, R., and Figueiredo, K.
(2009). Ifsa-eusflat 2009 a neuro-fuzzy system for
fraud detection in electricity distribution.
Nagi, J. and Mohamad, M. (2010). Nontechnical loss de-
tection for metered customers in power utility using
support vector machines. IEEE TRANSACTIONS ON
POWER DELIVERY, VOL. 25, NO. 2.
Ramos, C., de Sousa, A. N., Papa, J., and Falcao, A.
(2010). A new approach for nontechnical losses de-
tection based on optimum-path forest. IEEE TRANS-
ACTIONS ON POWER SYSTEMS.
Romero, J. (2012). Improving the efficiency of power dis-
tribution system through technical and non-technical
losses reduction.
Sforna, M. (2000). Data mining in power company cus-
tomer database.
Yap, K. S., Hussien, Z., and Mohamad, A. (2007). Abnor-
malities and fraud electric meter detection using hy-
brid support vector machine and genetic algorithm.
Yap, K. S., Tiong, S. K., Nagi, J., Koh, J. S. P., and Nagi, F.
(2012). Comparison of supervised learning techniques
for non-technical loss detection in power utility.
ICPRAM2014-InternationalConferenceonPatternRecognitionApplicationsandMethods
628