prediction in social networks. In Social Network Data
Analytics, pages 243–275. Springer.
Banfield, R. E., Hall, L. O., Bowyer, K. W., and
Kegelmeyer, W. P. (2007). A comparison of deci-
sion tree ensemble creation techniques. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
29(1):173–180.
Carrington, P. J., Scott, J., and Wasserman, S. (2005). Mod-
els and methods in social network analysis. Cam-
bridge University Press.
Chowdhury, G. (2010). Introduction to modern information
retrieval. Facet Publishing.
Cukierski, W., Hamner, B., and Yang, B. (2011). Graph-
based features for supervised link prediction. In Neu-
ral Networks (IJCNN), The 2011 International Joint
Conference on, pages 1237–1244. IEEE.
Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N. V., Rao,
J., and Cao, H. (2012). Link prediction and recom-
mendation across heterogeneous social networks. In
Data Mining (ICDM), 2012 IEEE 12th International
Conference on, pages 181–190. IEEE.
Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L.,
and Elovici, Y. (2011). Link prediction in social net-
works using computationally efficient topological fea-
tures. In Privacy, Security, Risk and Trust (PASSAT),
2011 IEEE Third International Conference on and So-
cial Computing (SOCIALCOM), 2011 IEEE Third In-
ternational Conference on, pages 73–80. IEEE.
Kim, H.-C., Pang, S., Je, H.-M., Kim, D., and Yang Bang,
S. (2003). Constructing support vector machine en-
semble. Pattern Recognition, 36(12):2757–2767.
Knoke, D. and Yang, S. (2008). Social network analysis,
volume 154. Sage.
Leicht, E., Holme, P., and Newman, M. (2006). Vertex sim-
ilarity in networks. Physical Review E, 73(2):026120.
Lin, J. and Ryaboy, D. (2013). Scaling big data mining
infrastructure: the twitter experience. ACM SIGKDD
Explorations Newsletter, 14(2):6–19.
Lorrain, F. and White, H. C. (1971). Structural equiva-
lence of individuals in social networks. The Journal
of Mathematical Sociology, 1(1):49–80.
L¨u, L., Jin, C.-H., and Zhou, T. (2009). Similarity index
based on local paths for link prediction of complex
networks. Physical Review E, 80(4):046122.
L¨u, L. and Zhou, T. (2011). Link prediction in complex
networks: A survey. Physica A: Statistical Mechanics
and its Applications, 390(6):1150–1170.
O’Hagan, M. (1988). Aggregating template or rule an-
tecedents in real-time expert systems with fuzzy set
logic. In Signals, Systems and Computers, Twenty-
Second Asilomar Conference on, volume 2, pages
681–689. IEEE.
Pajek (2007). http://vlado.fmf.uni-lj.si/pub/networks/data/.
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N.,
and Barab´asi, A.-L. (2002). Hierarchical organiza-
tion of modularity in metabolic networks. Science,
297(5586):1551–1555.
Wang, Y.-M., Luo, Y., and Hua, Z. (2007). Aggregating
preference rankings using owa operator weights. In-
formation Sciences, 177(16):3356–3363.
Yager, R. R. (1988). On ordered weighted averaging aggre-
gation operators in multicriteria decisionmaking. Sys-
tems, Man and Cybernetics, IEEE Transactions on,
18(1):183–190.
Zhang, C. and Ma, Y. (2012). Ensemble machine learning:
methods and applications. Springer.
Zhao, J., Feng, X., Dong, L., Liang, X., and Xu, K. (2012).
Performance of local information-based link predic-
tion: a sampling perspective. Journal of Physics A:
Mathematical and Theoretical, 45(34):345001.
Zhou, T., L¨u, L., and Zhang, Y.-C. (2009). Predicting miss-
ing links via local information. The European Physi-
cal Journal B, 71(4):623–630.
Zhou, Z.-H. (2012). Ensemble methods: foundations and
algorithms. CRC Press.
Zhou, Z.-H., Wu, J., and Tang, W. (2002). Ensembling neu-
ral networks: many could be better than all. Artificial
Intelligence, 137(1):239–263.
IntegratingLocalInformation-basedLinkPredictionAlgorithmswithOWAOperator
219